The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2

被引:150
作者
Goh, Youngin [1 ]
Jeon, Sanghun [2 ]
机构
[1] Korea Univ, Dept Appl Phys, 2511 Sejongro, Sejong 339700, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Elect Engn, 291 Daehakro, Daejeon, South Korea
关键词
ferroelectric; hafnium oxide; ferroelectric tunnel junction; tunneling electroresistance; bottom electrode; ELECTRORESISTANCE; FILMS;
D O I
10.1088/1361-6528/aac6b3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ferroelectric tunnel junctions (FIJs) have attracted research interest as promising candidates for non-destructive readout non-volatile memories. Unlike conventional perovskite FTJs, hafnia FTJs offer many advantages in terms of scalability and CMOS compatibility. However, so far, hafnia FTJs have shown poor endurance and relatively low resistance ratios and these have remained issues for real device applications. In our study, we fabricated HfZrO(HZO)-based FTJs with various electrodes (TiN, Si, SiGe, Ge) and improved the memory performance of HZO-based FTJs by using the asymmetry of the charge screening lengths of the electrodes. For the HZO-based FTJ with a Ge substrate, the effective barrier afforded by this FTJ can be electrically modulated because of the space charge-limited region formed at the ferroelectric/semiconductor interface. The optimized HZO-based FTJ with a Ge bottom electrode presents excellent ferroelectricity with a high remnant polarization of 18 mu C cm(-2), high tunneling electroresistance value of 30, good retention at 85 degrees C and high endurance of 10(7). The results demonstrate the great potential of HfO2 -based FTJs in non-destructive readout non-volatile memories.
引用
收藏
页数:8
相关论文
共 24 条
[1]  
a L Esaki., 1971, IBM Tech. Discl. Bull, V13, P114
[2]   Tunneling electroresistance effect in a Pt/Hf0.5Zr0.5O2/Pt structure [J].
Ambriz-Vargas, F. ;
Kolhatkar, G. ;
Thomas, R. ;
Nouar, R. ;
Sarkissian, A. ;
Gomez-Yanez, C. ;
Gauthier, M. A. ;
Ruediger, A. .
APPLIED PHYSICS LETTERS, 2017, 110 (09)
[3]   A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction [J].
Ambriz-Vargas, Fabian ;
Kolhatkar, Gitanjali ;
Broyer, Maxime ;
Hadj-Youssef, Azza ;
Nouar, Rafik ;
Sarkissian, Andranik ;
Thomas, Reji ;
Gomez-Yanez, Carlos ;
Gauthier, Marc A. ;
Ruediger, Andreas .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) :13262-13268
[4]   Ferroelectricity in hafnium oxide thin films [J].
Boescke, T. S. ;
Mueller, J. ;
Braeuhaus, D. ;
Schroeder, U. ;
Boettger, U. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[5]  
Chanthbouala A, 2012, NAT NANOTECHNOL, V7, P101, DOI [10.1038/NNANO.2011.213, 10.1038/nnano.2011.213]
[6]   Emerging memories: resistive switching mechanisms and current status [J].
Jeong, Doo Seok ;
Thomas, Reji ;
Katiyar, R. S. ;
Scott, J. F. ;
Kohlstedt, H. ;
Petraru, A. ;
Hwang, Cheol Seong .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (07)
[7]   Pulse Switching Study on the HfZrO Ferroelectric Films With High Pressure Annealing [J].
Kim, Taeho ;
Jeon, Sanghun .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (05) :1771-1773
[8]   Effects of high pressure nitrogen annealing on ferroelectric Hf0.5Zr0.5O2 films [J].
Kim, Taeho ;
Park, Jinsung ;
Cheong, Byoung-Ho ;
Jeon, Sanghun .
APPLIED PHYSICS LETTERS, 2018, 112 (09)
[9]   Theoretical current-voltage characteristics of ferroelectric tunnel junctions [J].
Kohlstedt, H ;
Pertsev, NA ;
Contreras, JR ;
Waser, R .
PHYSICAL REVIEW B, 2005, 72 (12)
[10]   Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects [J].
Mueller, J. ;
Polakowski, P. ;
Mueller, S. ;
Mikolajick, T. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2015, 4 (05) :N30-N35