DEGENERATE BIFURCATIONS OF HETERODIMENSIONAL CYCLES WITH ORBIT FLIP

被引:3
|
作者
Liu, Xingbo [1 ]
Liu, Junying [1 ]
Zhu, Deming [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 05期
关键词
Bifurcation; heterodimensional cycle; orbit flip; local coordinates; HOMOCLINIC ORBITS; UNFOLDINGS;
D O I
10.1142/S0218127413500806
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, nongeneric bifurcation analysis near heterodimensional cycles with orbit flip is investigated for three-dimensional systems. With the aid of a suitable local coordinate system, the Poincare map is constructed. By means of the bifurcation equations, the existence, nonexistence, coexistence and uniqueness of homoclinic orbit, periodic orbits and the heterodimensional cycle are studied, the relevant bifurcation surfaces and their existing regions are given. Some known results are extended. An example is given to show the existence of the system which has a heterodimensional cycle with orbit flip.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Cascades of heterodimensional cycles via period doubling
    Wong, Nelson
    Krauskopf, Bernd
    Osinga, Hinke M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [32] Persistent heterodimensional cycles in periodic perturbations of Lorenz-like attractors
    Li, Dongchen
    Turaev, Dmitry
    NONLINEARITY, 2020, 33 (03) : 971 - 1015
  • [33] HETERODIMENSIONAL TANGENCIES ON CYCLES LEADING TO STRANGE ATTRACTORS
    Kiriki, Shin
    Nishizawa, Yusuke
    Soma, Teruhiko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (01) : 285 - 300
  • [34] Resonant homoclinic flip bifurcations
    Homburg A.J.
    Krauskopf B.
    Journal of Dynamics and Differential Equations, 2000, 12 (4) : 807 - 850
  • [35] NONRESONANT BIFURCATIONS OF HETEROCLINIC LOOPS WITH ONE INCLINATION FLIP
    Shui, Shuliang
    Li, Jingjing
    Zhang, Xuyang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (01): : 255 - 273
  • [36] Robust heterodimensional cycles and C1-generic dynamics
    Bonatti, Christian
    Diaz, Lorenzo J.
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (03) : 469 - 525
  • [37] Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles
    Lan Wen*
    Bulletin of the Brazilian Mathematical Society, 2004, 35 : 419 - 452
  • [38] EXISTENCE OF HETERODIMENSIONAL CYCLES NEAR SHILNIKOV LOOPS IN SYSTEMS WITH A Z2 SYMMETRY
    Li, Dongchen
    Turaev, Dmitry V.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (08) : 4399 - 4437
  • [39] Generic diffieomorphisms away from homoclinic tangencies and heterodimensional cycles
    Wen, L
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (03): : 419 - 452
  • [40] LOCAL BIFURCATIONS OF A QUASIPERIODIC ORBIT
    Banerjee, Soumitro
    Giaouris, Damian
    Missailidis, Petros
    Imrayed, Otman
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (12):