Experimental study of kerogen maturation by solid-state 13C NMR spectroscopy

被引:42
|
作者
Burdelnaya, N. [1 ]
Bushnev, D. [1 ]
Mokeev, M. [2 ]
Dobrodumov, A. [2 ]
机构
[1] RAS, Inst Geol, Komi Sci Ctr, Ural Branch, Syktyvkar 167982, Russia
[2] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia
基金
俄罗斯基础研究基金会;
关键词
Kerogen; Solid-state C-13 NMR; Hydrous pyrolysis; Artificial maturation; NUCLEAR-MAGNETIC-RESONANCE; RICH OIL-SHALE; ORGANIC-MATTER; CHEMICAL-STRUCTURE; DETERMINING QUANTITATION; HYDROUS PYROLYSIS; THERMAL MATURITY; SPECTRA; FRACTIONS; SOIL;
D O I
10.1016/j.fuel.2013.11.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chemical changes in the structure of kerogen during simulated thermal maturation were investigated by solid-state C-13 NMR spectroscopy. The spin counting technique was used to evaluate the share of "observable'' carbon atoms with increasing hydrous pyrolysis temperature. The obtained one-dimensional CP-MAS spectra showed that up to 50% of ether bonds were destroyed during the initial stages of sample heating. In spite of the loss of a significant part of alkyl chains, kerogen remained aliphatic. The aromatic structure of kerogen underwent considerable changes: two-dimensional H-1-C-13 heteronuclear solid-state NMR (HETCOR) spectra showed that in the process of hydrous pyrolysis, the redistribution of carbon atoms took place - branched aromatic carbons transform into bridgehead aromatic carbons. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:308 / 315
页数:8
相关论文
共 50 条
  • [1] Assessment of thermal evolution of kerogen geopolymers with their structural parameters measured by solid-state 13C NMR spectroscopy
    Wei, ZB
    Gao, XX
    Zhang, DJ
    Da, J
    ENERGY & FUELS, 2005, 19 (01) : 240 - 250
  • [2] Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy
    Mao, Jingdong
    Fang, Xiaowen
    Lan, Yeqing
    Schimmelmann, Arndt
    Mastalerz, Maria
    Xu, Ling
    Schmidt-Rohr, Klaus
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2010, 74 (07) : 2110 - 2127
  • [3] Study of liquid-crystalline polyesters by solid-state 13C NMR spectroscopy
    Zuyev, V.V.
    Yelkin, A.Yu.
    Gribanov, A.V.
    Skorokhodov, S.S.
    Polymer science USSR, 1988, 30 (11): : 2595 - 2599
  • [4] Solid-state 13C NMR study of indomethacin polymorphism
    Masuda, Katsuhiko
    Tabata, Sachio
    Kono, Hiroyuki
    Sakata, Yasuyuki
    Hayase, Tetsuo
    Yonemochi, Etsuo
    Terada, Katsuhide
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2006, 318 (1-2) : 146 - 153
  • [5] 13C solid-state NMR study of polyelectrolyte multilayers
    Smith, RN
    Reven, L
    Barrett, CJ
    MACROMOLECULES, 2003, 36 (06) : 1876 - 1881
  • [6] Protein solid-state NMR resonance assignments from (13C, 13C) correlation spectroscopy
    Seidel, K
    Lange, A
    Becker, S
    Hughes, CE
    Heise, H
    Baldus, M
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (22) : 5090 - 5093
  • [7] Characterization of Kerogen and Source Rock Maturation Using Solid-State NMR Spectroscopy
    Clough, Andrew
    Sigle, Jessica L.
    Jacobi, David
    Sheremata, Jeff
    White, Jeffery L.
    ENERGY & FUELS, 2015, 29 (10) : 6370 - 6382
  • [8] MATURATION OF KEROGEN IN PALEOZOIC ROCKS FROM THE APPALACHIAN BASIN AS DETERMINED BY SOLID-STATE C-13 NMR-SPECTROSCOPY
    ROMANKIW, LA
    ROEN, JB
    HATCHER, PG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 188 (AUG): : 15 - GEOC
  • [9] Combined High-Resolution Solid-State 1H/13C NMR Spectroscopy and 1H NMR Relaxometry for the Characterization of Kerogen Thermal Maturation
    Panattoni, Francesco
    Mitchell, Jonathan
    Fordham, Edmund J.
    Kausik, Ravinath
    Grey, Clare P.
    Magusin, Pieter C. M. M.
    ENERGY & FUELS, 2021, 35 (02) : 1070 - 1079
  • [10] DETERMINATION OF WOOD COMPOSITION USING SOLID-STATE 13C NMR SPECTROSCOPY
    Kostryukov, Sergey G.
    Petrov, Pavel S.
    Tezikova, Veronica S.
    Masterova, Yuliya Yu
    Idris, Tulfikar J.
    Kostryukov, Nikita S.
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2021, 55 (5-6): : 461 - 468