PCF self-similar sets and fractal interpolation

被引:6
作者
de Amo, Enrique
Diaz Carrillo, Manuel
Fernandez Sanchez, Juan
机构
[1] Univ Almeria, Dept Matem Ticas, Almeria, Spain
[2] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[3] Univ Almeria, Grp Invest Anal Matemat, Almeria, Spain
关键词
Post critically finite set; Self-similar structure; Iterated function system; Harmonic function on a fractal;
D O I
10.1016/j.matcom.2013.04.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aim of this paper is to show, using some of Barnsley's ideas, how it is possible to generalize a fractal interpolation problem to certain post critically finite (PCF) compact sets in R-n. We use harmonic functions to solve this fractal interpolation problem. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 39
页数:12
相关论文
共 50 条
  • [41] Topology of connected self-similar tiles in the plane with disconnected interiors
    Ngai, SM
    Tang, TM
    TOPOLOGY AND ITS APPLICATIONS, 2005, 150 (1-3) : 139 - 155
  • [42] Spectrality of self-similar measures with product-form digits
    Su, Juan
    Wu, Sha
    Chen, Ming-Liang
    FORUM MATHEMATICUM, 2022, 34 (05) : 1355 - 1364
  • [43] Separation properties for graph-directed self-similar fractals
    Das, M
    Edgar, GA
    TOPOLOGY AND ITS APPLICATIONS, 2005, 152 (1-2) : 138 - 156
  • [44] Local dimensions of self-similar measures satisfying the finite neighbour condition
    Hare, Kathryn E.
    Rutar, Alex
    NONLINEARITY, 2022, 35 (09) : 4876 - 4904
  • [45] Multi-dimensional self-affine fractal interpolation model
    Zhang, Tong
    Zhuang, Zhuo
    ADVANCES IN COMPLEX SYSTEMS, 2006, 9 (1-2): : 133 - 146
  • [46] Self-similar measures associated to IFS with non-uniform contraction ratios
    Ngai, SM
    Wang, Y
    ASIAN JOURNAL OF MATHEMATICS, 2005, 9 (02) : 227 - 244
  • [47] MULTIVARIATE AFFINE FRACTAL INTERPOLATION
    Navascues, M. A.
    Katiyar, S. K.
    Chand, A. K. B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [48] Linear fractal shape interpolation
    Burch, B
    Hart, JC
    GRAPHICS INTERFACE '97 - PROCEEDINGS, 1997, : 155 - 162
  • [49] Similar dissection of sets
    Akiyama, Shigeki
    Luo, Jun
    Okazaki, Ryotaro
    Steiner, Wolfgang
    Thuswaldner, Joerg
    GEOMETRIAE DEDICATA, 2011, 150 (01) : 233 - 247
  • [50] Multi-dimensional self-affine fractal interpolation model in tensor form
    Tong Zhang
    Jian Lin Liu
    Zhuo Zhuang
    Nonlinear Dynamics, 2008, 52 : 83 - 87