PCF self-similar sets and fractal interpolation

被引:6
|
作者
de Amo, Enrique
Diaz Carrillo, Manuel
Fernandez Sanchez, Juan
机构
[1] Univ Almeria, Dept Matem Ticas, Almeria, Spain
[2] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[3] Univ Almeria, Grp Invest Anal Matemat, Almeria, Spain
关键词
Post critically finite set; Self-similar structure; Iterated function system; Harmonic function on a fractal;
D O I
10.1016/j.matcom.2013.04.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aim of this paper is to show, using some of Barnsley's ideas, how it is possible to generalize a fractal interpolation problem to certain post critically finite (PCF) compact sets in R-n. We use harmonic functions to solve this fractal interpolation problem. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 39
页数:12
相关论文
共 50 条
  • [21] Arithmetic on self-similar sets
    Zhao, Bing
    Ren, Xiaomin
    Zhu, Jiali
    Jiang, Kan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (04): : 595 - 606
  • [22] The dimensions of self-similar sets
    Li, WX
    Xiao, DM
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (04) : 789 - 799
  • [23] Irrational self-similar sets
    Jia, Qi
    Li, Yuanyuan
    Jiang, Kan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 461 - 472
  • [24] Computability of self-similar sets
    Kamo, H
    Kawamura, K
    MATHEMATICAL LOGIC QUARTERLY, 1999, 45 (01) : 23 - 30
  • [25] Gauges for the self-similar sets
    Wen, Sheng-You
    Wen, Zhi-Xiong
    Wen, Zhi-Ying
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (08) : 1205 - 1214
  • [26] Sliding of self-similar sets
    Xi, Li-feng
    Ruan, Huo-jun
    Guo, Qiu-li
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (03): : 351 - 360
  • [27] Sliding of self-similar sets
    Li-feng XI
    Department of Mathematics
    Science in China(Series A:Mathematics), 2007, (03) : 351 - 360
  • [28] Sliding of self-similar sets
    Li-feng XI
    Huo-jun Ruan
    Qiu-li Guo
    Science in China Series A: Mathematics, 2007, 50 : 351 - 360
  • [29] On the dimension of self-similar sets
    Simon, KR
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) : 59 - 65
  • [30] Intersections of self-similar sets
    Mcclure, Mark
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2008, 16 (02) : 187 - 197