3D ACTION RECOGNITION USING DATA VISUALIZATION AND CONVOLUTIONAL NEURAL NETWORKS

被引:0
作者
Liu, Mengyuan [1 ]
Chen, Chen [2 ]
Liu, Hong [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Key Lab Machine Percept, Shenzhen, Peoples R China
[2] Univ Cent Florida, Ctr Comp Vis Res, Orlando, FL 32816 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2017年
基金
中国国家自然科学基金;
关键词
3D action recognition; data visualization; skeleton data; convolutional neural networks; DEPTH; SENSOR; FUSION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It remains a challenge to efficiently represent spatial-temporal data for 3D action recognition. To solve this problem, this paper presents a new skeleton-based action representation using data visualization and convolutional neural networks, which contains four main stages. First, skeletons from an action sequence are mapped as a set of five dimensional points, containing three dimensions of location, one dimension of time label and one dimension of joint label. Second, these points are encoded as a series of color images, by visualizing points as RGB pixels. Third, convolutional neural networks are adopted to extract deep features from color images. Finally, action class score is calculated by fusing selected deep features. Extensive experiments on three benchmark datasets show that our method achieves state-of-the-art results.
引用
收藏
页码:925 / 930
页数:6
相关论文
共 35 条
  • [11] Improving Human Action Recognition Using Fusion of Depth Camera and Inertial Sensors
    Chen, Chen
    Jafari, Roozbeh
    Kehtarnavaz, Nasser
    [J]. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2015, 45 (01) : 51 - 61
  • [12] Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling
    Ding, Meng
    Fan, Guoliang
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (11) : 2413 - 2424
  • [13] Du Y, 2015, PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, P579, DOI 10.1109/ACPR.2015.7486569
  • [14] Du Y, 2015, PROC CVPR IEEE, P1110, DOI 10.1109/CVPR.2015.7298714
  • [15] Skeletal Quads: Human Action Recognition Using Joint Quadruples
    Evangelidis, Georgios
    Singh, Gurkirt
    Horaud, Radu
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 4513 - 4518
  • [16] Hong Liu, 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P1235, DOI 10.1109/ICASSP.2014.6853794
  • [17] Hu JF, 2015, PROC CVPR IEEE, P5344, DOI 10.1109/CVPR.2015.7299172
  • [18] Hussein M. E., 2013, IJCAI, P2466, DOI DOI 10.5555/2540128.2540483
  • [19] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [20] Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition
    Liu, Jun
    Shahroudy, Amir
    Xu, Dong
    Wang, Gang
    [J]. COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 816 - 833