A molten salt electrochemical system comprising a eutectic mixture of Li-Na-K carbonates, a Ni cathode, and a SnO2 inert anode is proposed for the capture and electrochemical conversion of CO2. It is demonstrated that CO2 can be effectively captured by molten carbonates, and subsequently electrochemically split into amorphous carbon on the cathode, and oxygen gas at the anode. The carbon materials generated at the cathode exhibit high BET surface areas of more than 400 m(2) g(-1) and as such, represent value-added products for a variety of applications such as energy storage and pollutant adsorption. In the carbonate eutectic (500 degrees C), the presence of Li2CO3 is shown to be required for the deposition of carbon from the melt, wherein O-2(-) or Li2O serves as the intermediate for CO2 capture and electrochemical conversion. SnO2 proved to be an effective anode for the electrochemical evolution of oxygen. Electrochemical reactions were found to proceed at relatively high current efficiencies, even though the current densities exceed 50 mA cm(-2). The intrinsic nature of alkaline oxides for CO2 capture, the conversion of CO2 to value-added products, and the ability to drive the process with renewable energy sources such as solar power, enables the technology to be engineered for high flux capture and utilization of CO2.