Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model

被引:40
|
作者
Chen, WY [1 ]
Peng, R [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
基金
中国国家自然科学基金;
关键词
competitor-competitor-mutualist model; cross-diffusion; non-constant positive steady-states;
D O I
10.1016/j.jmaa.2003.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a competitor-competitor-mutualist model with cross-diffusion. We prove some existence and non-existence results concerning non-constant positive steady-states (patterns). In particular, we demonstrate that the cross-diffusion can create patterns when the corresponding model without cross-diffusion fails. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:550 / 564
页数:15
相关论文
共 50 条
  • [31] Stationary patterns of a ratio-dependent prey-predator model with cross-diffusion
    Jing-fu Zhao
    Hong-tao Zhang
    Jing Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 497 - 504
  • [32] Stationary Patterns of a Ratio-dependent Prey-predator Model with Cross-diffusion
    Jing-fu ZHAO
    Hong-tao ZHANG
    Jing YANG
    ActaMathematicaeApplicataeSinica, 2017, 33 (02) : 497 - 504
  • [33] Stationary patterns of a ratio-dependent prey-predator model with cross-diffusion
    Zhao, Jing-fu
    Zhang, Hong-tao
    Yang, Jing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02): : 497 - 504
  • [34] Stationary patterns caused by cross-diffusion for a three-species prey-predator model
    Wang, Mingxin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (05) : 707 - 720
  • [35] Stationary patterns induced by self- and cross-diffusion in a Beddington–DeAngelis predator–prey model
    Guin L.N.
    Mondal B.
    Chakravarty S.
    International Journal of Dynamics and Control, 2017, 5 (4) : 1051 - 1062
  • [36] Stationary Patterns for A Modified Leslie-Gower Predator-Prey Model with Cross-Diffusion
    Zhang, Lina
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 422 - 426
  • [37] Induction of patterns through crowding in a cross-diffusion model
    Aldandani, Mohammed
    Ward, John
    Davidson, Fordyce A.
    RESULTS IN APPLIED MATHEMATICS, 2024, 24
  • [38] Spatiotemporal patterns induced by cross-diffusion on vegetation model
    Xu, Shuo
    Zhang, Chunrui
    AIMS MATHEMATICS, 2022, 7 (08): : 14076 - 14098
  • [39] Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction–diffusion model
    Rui Yang
    Nonlinear Dynamics, 2022, 110 : 1753 - 1766
  • [40] Stationary Patterns of a Cross-Diffusion Prey-Predator Model with Holling Type II Functional Response
    Zhang, Hongtao
    Zhao, Jingfu
    JOURNAL OF MATHEMATICS, 2023, 2023