Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model

被引:40
作者
Chen, WY [1 ]
Peng, R [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
基金
中国国家自然科学基金;
关键词
competitor-competitor-mutualist model; cross-diffusion; non-constant positive steady-states;
D O I
10.1016/j.jmaa.2003.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a competitor-competitor-mutualist model with cross-diffusion. We prove some existence and non-existence results concerning non-constant positive steady-states (patterns). In particular, we demonstrate that the cross-diffusion can create patterns when the corresponding model without cross-diffusion fails. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:550 / 564
页数:15
相关论文
共 26 条
[1]  
Capasso V., 1999, LECT NOTES MATH, V1714
[2]   EXPERIMENTAL-EVIDENCE OF A SUSTAINED STANDING TURING-TYPE NONEQUILIBRIUM CHEMICAL-PATTERN [J].
CASTETS, V ;
DULOS, E ;
BOISSONADE, J ;
DEKEPPER, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2953-2956
[3]   Effect of cross-diffusion on pattern formation - A nonlinear analysis [J].
Chattopadhyay, J ;
Tapaswi, PK .
ACTA APPLICANDAE MATHEMATICAE, 1997, 48 (01) :1-12
[4]  
CHEN XF, STEADY STATES STRONG
[5]  
CHEN XF, STRONGLY COUPLED PRE
[6]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[7]  
Davidson FA, 2000, P ROY SOC EDINB A, V130, P507
[8]   Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation [J].
Du, YH ;
Lou, Y .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :321-349
[9]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[10]   AN INTERFACIAL APPROACH TO REGIONAL SEGREGATION OF 2 COMPETING SPECIES MEDIATED BY A PREDATOR [J].
IKEDA, T ;
MIMURA, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1993, 31 (03) :215-240