Quantum mechanics without statistical postulates

被引:0
作者
Geiger, H [1 ]
Obermair, G [1 ]
Heim, C [1 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
来源
QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3 | 2001年
关键词
Bohmian Quantum mechanics; measurement process; statistics;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory.
引用
收藏
页码:139 / 142
页数:4
相关论文
共 40 条
  • [1] Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics
    Arkady Plotnitsky
    Andrei Khrennikov
    Foundations of Physics, 2015, 45 : 1269 - 1300
  • [2] Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics
    Plotnitsky, Arkady
    Khrennikov, Andrei
    FOUNDATIONS OF PHYSICS, 2015, 45 (10) : 1269 - 1300
  • [3] BASIC-DEFORMED QUANTUM MECHANICS
    Lavagno, A.
    REPORTS ON MATHEMATICAL PHYSICS, 2009, 64 (1-2) : 79 - 91
  • [4] Anyons in quantum mechanics with a minimal length
    Buisseret, Fabien
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (02):
  • [5] Quantum mechanics in q-deformed calculus
    Lavagno, A.
    Gervino, G.
    FOURTH INTERNATIONAL WORKSHOP DICE 2008: FROM QUANTUM MECHANICS THROUGH COMPLEXITY TO SPACETIME: THE ROLE OF EMERGENT DYNAMICAL STRUCTURES, 2009, 174
  • [6] Geometric approach to quantum statistical inference
    Jarzyna M.
    Kolodynski J.
    IEEE Journal on Selected Areas in Information Theory, 2020, 1 (02): : 367 - 386
  • [7] Does an Emphasis on the Concept of Quantum States Enhance Students' Understanding of Quantum Mechanics?
    Ileana Maria Greca
    Olival Freire
    Science & Education, 2003, 12 (5-6) : 541 - 557
  • [8] Generalized space and linear momentum operators in quantum mechanics
    da Costa, Bruno G.
    Borges, Ernesto P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (06)
  • [9] Tsallis entropy in phase-space quantum mechanics
    Sadeghi, Parvin
    Khademi, Siamak
    Darooneh, Amir H.
    PHYSICAL REVIEW A, 2012, 86 (01):
  • [10] Inherent properties and statistics with individual particles in quantum mechanics
    Morganti, Matteo
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2009, 40 (03): : 223 - 231