Inequalities for the spectral radius of non-negative functions

被引:21
作者
Peperko, Aljosa [1 ]
机构
[1] Univ Ljubljana, Inst Math Phys & Mech, SI-1000 Ljubljana, Slovenia
关键词
Measurable functions; spectral radius; convolution; max algebra; maximum cycle geometric mean; weighted geometric mean; function inequalities; function norms; operator inequalities; kernel operators; Hadamard product; lattice norms; MAX; EIGENVALUES; CONVEXITY; MATRICES;
D O I
10.1007/s11117-008-2188-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, mu) be a sigma-finite measure space and M(X x X)+ a cone of all equivalence classes of (almost everywhere equal) non-negative measurable functions on a product measure space X x X. Using Luxemburg-Gribanov theorem we define a product * on M(X x X)(+). Given a function seminorm h : M(X x X)(+) -> [0, infinity], we introduce the spectral radius r(h)(f) of f is an element of M(X x X)+ with respect to h and *. We give several examples. In particular, r(h)(f) provides a generalization and unification of the spectral radius and its max version, the maximum cycle geometric mean, of a non-negative matrix.
引用
收藏
页码:255 / 272
页数:18
相关论文
共 30 条
[1]  
AKIAN M, 2007, COLLATZ WIELANDT THE
[2]  
Aliprantis CD., 1985, Positive Operators
[3]  
[Anonymous], 1994, Advances in Imaging and Electron Physics, DOI DOI 10.1016/S1076-5670(08)70083-1
[4]  
Baccelli F., 1992, Synchronization and Linearity
[5]  
BAPAT R. B., 1997, Encyclopedia Math. Appl, V64
[6]  
Bapat RB, 1998, LINEAR ALGEBRA APPL, V276, P3
[7]  
Bennett C., 1988, INTERPOLATION OPERAT
[8]   BOUNDED SEMIGROUPS OF MATRICES [J].
BERGER, MA ;
WANG, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 166 :21-27
[9]   Max-algebra: the linear algebra of combinatorics? [J].
Butkovic, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 367 (367) :313-335
[10]  
Cuninghame-Green R. A., 1979, Lecture Notes in Economics and Mathematical Systems, V166