EXTRAPOLATION OF THE FINITE ELEMENT METHOD ON GENERAL MESHES

被引:0
作者
Lin, Qun [1 ]
Xie, Hehu [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Extrapolation; finite element method; general meshes; POSTERIORI ERROR ESTIMATORS; SUPERCONVERGENCE; EXPANSION; GRIDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the extrapolation method for second order elliptic problems on general meshes and derive a type of finite element expansion which is dependent of the triangulation. It allows to prove the effectiveness of the extrapolation on general meshes and also validates the extrapolation method can be applied on the automatically produced meshes of the general computing domains. Some numerical examples are given to illustrate the theoretical analysis.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 50 条
[41]   Ultraconvergence of finite element method by Richardson extrapolation for elliptic problems with inhomogeneous boundary conditions [J].
He, Wen-ming ;
Zhao, Ren ;
Cao, Yong .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (01) :33-47
[42]   Superconvergence of quadratic finite volume method on triangular meshes [J].
Wang, Xiang ;
Li, Yonghai .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 :181-199
[43]   Supercloseness of the mixed finite element method for the primary function on unstructured meshes and its applications [J].
JaEun Ku .
BIT Numerical Mathematics, 2014, 54 :1087-1097
[44]   STABILIZED NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY ON RECTANGULAR OR CUBIC MESHES [J].
Zhang, Bei ;
Zhao, Jikun ;
Li, Minghao ;
Chen, Hongru .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (06) :869-885
[45]   Criteria to achieve nearly optimal meshes in the h-adaptive finite element method [J].
Fuenmayor, FJ ;
Oliver, JL .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1996, 39 (23) :4039-4061
[46]   Supercloseness of the mixed finite element method for the primary function on unstructured meshes and its applications [J].
Ku, JaEun .
BIT NUMERICAL MATHEMATICS, 2014, 54 (04) :1087-1097
[47]   Optimal Order of Uniform Convergence for Finite Element Method on Bakhvalov-Type Meshes [J].
Jin Zhang ;
Xiaowei Liu .
Journal of Scientific Computing, 2020, 85
[48]   Optimal Order of Uniform Convergence for Finite Element Method on Bakhvalov-Type Meshes [J].
Zhang, Jin ;
Liu, Xiaowei .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (01)
[49]   Error estimates for a fully discrete ε-uniform finite element method on quasi uniform meshes [J].
Sendur, Ali ;
Natesan, Srinivasan ;
Singh, Gautam .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (05) :1306-1324
[50]   SUPERCONVERGENCE ANALYSIS OF THE LINEAR FINITE ELEMENT METHOD AND A GRADIENT RECOVERY POSTPROCESSING ON ANISOTROPIC MESHES [J].
Cao, Weiming .
MATHEMATICS OF COMPUTATION, 2015, 84 (291) :89-117