EXTRAPOLATION OF THE FINITE ELEMENT METHOD ON GENERAL MESHES

被引:0
作者
Lin, Qun [1 ]
Xie, Hehu [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Extrapolation; finite element method; general meshes; POSTERIORI ERROR ESTIMATORS; SUPERCONVERGENCE; EXPANSION; GRIDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the extrapolation method for second order elliptic problems on general meshes and derive a type of finite element expansion which is dependent of the triangulation. It allows to prove the effectiveness of the extrapolation on general meshes and also validates the extrapolation method can be applied on the automatically produced meshes of the general computing domains. Some numerical examples are given to illustrate the theoretical analysis.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 50 条
[31]   Jacobian-based repair method for finite element meshes after registration [J].
Bucki, Marek ;
Lobos, Claudio ;
Payan, Yohan ;
Hitschfeld, Nancy .
ENGINEERING WITH COMPUTERS, 2011, 27 (03) :285-297
[32]   Supercloseness and postprocessing for linear finite element method on Bakhvalov-type meshes [J].
Jin Zhang ;
Xiaowei Liu .
Numerical Algorithms, 2023, 92 :1553-1570
[33]   Finite Element Method on locally refined composite meshes for Dirichlet fractional Laplacian [J].
Zhou, Jun ;
Chen, Hongbin .
JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 82
[34]   Superconvergence Error Estimate of a Finite Element Method on Nonuniform Time Meshes for Reaction-Subdiffusion Equations [J].
Ren, Jincheng ;
Liao, Hong-lin ;
Zhang, Zhimin .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
[35]   A monotone nonlinear finite volume method for approximating diffusion operators on general meshes [J].
Camier, Jean-Sylvain ;
Hermeline, Francois .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (06) :496-519
[36]   LINEAR FINITE ELEMENT SUPERCONVERGENCE ON SIMPLICIAL MESHES [J].
Chen, Jie ;
Wang, Desheng ;
Du, Qiang .
MATHEMATICS OF COMPUTATION, 2014, 83 (289) :2161-2185
[37]   Finite element method based sliding wear prediction of steel-on-steel contacts using extrapolation techniques [J].
Bose, Kunal K. ;
Ramkumar, P. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2019, 233 (10) :1446-1463
[38]   EXTRAPOLATION FOR FINITE ELEMENT METHODS OF THE FIRST KIND FREDHOLM INTEGRAL EQUATIONS [J].
Zhou Aihui Institute of Systems ScienceAcademia SinicaBeijing China .
SystemsScienceandMathematicalSciences, 1991, (01) :41-50
[40]   SUPERCONVERGENCE OF DIFFERENTIAL STRUCTURE FOR FINITE ELEMENT METHODS ON PERTURBED SURFACE MESHES [J].
Dong, Guozhi ;
Guo, Hailong ;
Guo, Ting .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024,