EXTRAPOLATION OF THE FINITE ELEMENT METHOD ON GENERAL MESHES

被引:0
作者
Lin, Qun [1 ]
Xie, Hehu [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Extrapolation; finite element method; general meshes; POSTERIORI ERROR ESTIMATORS; SUPERCONVERGENCE; EXPANSION; GRIDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the extrapolation method for second order elliptic problems on general meshes and derive a type of finite element expansion which is dependent of the triangulation. It allows to prove the effectiveness of the extrapolation on general meshes and also validates the extrapolation method can be applied on the automatically produced meshes of the general computing domains. Some numerical examples are given to illustrate the theoretical analysis.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 50 条
[11]   Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems [J].
Njifenjou, A. ;
Donfack, H. ;
Moukouop-Nguena, I. .
COMPUTATIONAL GEOSCIENCES, 2013, 17 (02) :391-415
[12]   A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes [J].
Gao, Wei ;
Liu, Ruxun .
ACTA MECHANICA SINICA, 2009, 25 (06) :747-760
[13]   Extrapolation of the Nédélec element for the Maxwell equations by the mixed finite element method [J].
Hehu Xie .
Advances in Computational Mathematics, 2008, 29 :135-145
[14]   An algorithm using the finite volume element method and its splitting extrapolation [J].
Cao, Yong ;
He, Xiaoming ;
Lue, Tao .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) :3734-3742
[15]   A simple nodal force distribution method in refined finite element meshes [J].
Park, Jai Hak ;
Shin, Kyu In ;
Lee, Dong Won ;
Cho, Seungyon .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (05) :2221-2228
[16]   Convergence and superconvergence of a nonconforming finite element on anisotropic meshes [J].
Mao, Shipeng ;
Chen, Shaochun ;
Shi, Dongyang .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2007, 4 (01) :16-38
[17]   Finite volume element method for nonlinear elliptic equations on quadrilateral meshes [J].
Chen, Guofang ;
Lv, Junliang ;
Zhang, Xinye .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 140 :154-168
[18]   Tangled finite element method for handling concave elements in quadrilateral meshes [J].
Prabhune, Bhagyashree ;
Sridhara, Saketh ;
Suresh, Krishnan .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (07) :1576-1605
[19]   SUPERCONVERGENCE OF A QUADRATIC FINITE ELEMENT METHOD ON ADAPTIVELY REFINED ANISOTROPIC MESHES [J].
Cao, Weiming .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2018, 15 (1-2) :288-306
[20]   Recovery of the Boundary Layers by the Multiscale Finite Element Method on Graded Meshes [J].
Jiang, Shan .
2011 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND APPLICATIONS, 2011, :141-146