How Graphene Slides: Measurement and Theory of Strain-Dependent Frictional Forces between Graphene and SiO2

被引:104
作者
Kitt, Alexander L. [1 ]
Qi, Zenan [2 ]
Remi, Sebastian [1 ]
Park, Harold S. [2 ]
Swan, Anna K. [1 ,3 ,4 ]
Goldberg, Bennett B. [1 ,4 ,5 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[3] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[4] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[5] Boston Univ, Ctr Nanosci & Nanobiotechnol, Boston, MA 02215 USA
关键词
Graphene; strain; friction; Raman spectroscopy; bilayer graphene; tribology; BIAXIAL STRAIN; RESONATORS; ADHESION;
D O I
10.1021/nl4007112
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Strain, bending rigidity, and adhesion are interwoven in determining how graphene responds when pulled across a substrate. Using Raman spectroscopy of circular, graphene-sealed microchambers under variable external pressure, we demonstrate that graphene is not firmly anchored to the substrate when pulled. Instead, as the suspended graphene is pushed into the chamber under pressure, the supported graphene outside the microchamber is stretched and slides, pulling in an annulus. Analyzing Raman G band line scans with a continuum model extended to include sliding, we extract the pressure dependent sliding friction between the SiO2 substrate and mono-, bi-, and trilayer graphene. The sliding friction for trilayer graphene is directly ' proportional to the applied load, but the friction for naonolayer and bilayer graphene is inversely proportional to the strain in the graphene, which is in violation of Amontons' law. We attribute this behavior to the high surface conformation enabled by the low bending rigidity and strong adhesion of few layer graphene.
引用
收藏
页码:2605 / 2610
页数:6
相关论文
共 39 条
[1]   High, Size-Dependent Quality Factor in an Array of Graphene Mechanical Resonators [J].
Barton, Robert A. ;
Ilic, B. ;
van der Zande, Arend M. ;
Whitney, William S. ;
McEuen, Paul L. ;
Parpia, Jeevak M. ;
Craighead, Harold G. .
NANO LETTERS, 2011, 11 (03) :1232-1236
[2]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[3]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[4]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]  
Chen CY, 2009, NAT NANOTECHNOL, V4, P861, DOI [10.1038/NNANO.2009.267, 10.1038/nnano.2009.267]
[7]   Gruneisen parameter of the G mode of strained monolayer graphene [J].
Cheng, Y. C. ;
Zhu, Z. Y. ;
Huang, G. S. ;
Schwingenschloegl, U. .
PHYSICAL REVIEW B, 2011, 83 (11)
[8]   High-Fidelity Conformation of Graphene to SiO2 Topographic Features [J].
Cullen, W. G. ;
Yamamoto, M. ;
Burson, K. M. ;
Chen, J. H. ;
Jang, C. ;
Li, L. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)
[9]  
Deng Z, 2012, NAT MATER, V11, P1032, DOI [10.1038/NMAT3452, 10.1038/nmat3452]
[10]   Superlubricity of graphite [J].
Dienwiebel, M ;
Verhoeven, GS ;
Pradeep, N ;
Frenken, JWM ;
Heimberg, JA ;
Zandbergen, HW .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :126101-1