Altered astrocytic response to activation in SOD1G93A mice and its implications on amyotrophic lateral sclerosis pathogenesis

被引:32
|
作者
Benkler, Chen [1 ]
Ben-Zur, Tali [1 ]
Barhum, Yael [1 ]
Offen, Daniel [1 ]
机构
[1] Tel Aviv Univ, Rabin Med Ctr, Felsenstein Med Res Ctr, Sackler Sch Med,Sackler Fac Med,Neurosci Lab, IL-49100 Petah Tiqwa, Israel
关键词
ALS; GLT1; EAAT2; neurotrophic factor; glutamate; reactive astrocytes; motor neurons; GROWTH-FACTOR-I; MOTOR-NEURON DISEASE; NEUROTROPHIC FACTOR CNTF; SPINAL-CORD; GLUTAMATE TRANSPORTERS; SUPEROXIDE-DISMUTASE; REACTIVE ASTROCYTES; RAT MODEL; NEURODEGENERATIVE DISEASE; NONNEURONAL CELLS;
D O I
10.1002/glia.22428
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Amyotrophic Lateral Sclerosis (ALS) is a fatal, rapidly progressive, neurodegenerative disease caused by motor neuron degeneration. Despite extensive efforts, the underlying cause of ALS and the path of neurodegeneration remain elusive. Astrocyte activation occurs in response to central nervous system (CNS) insult and is considered a double edged sword in many pathological conditions. We propose that reduced glutamatergic and trophic response of astrocytes to activation may, over time, lead to accumulative CNS damage, thus facilitating neurodegeneration. We found that astrocytes derived from the SOD1G93A ALS mouse model exhibit a reduced glutamatergic and trophic response to specific activations compared to their wild-type counterparts. Wild-type astrocytes exhibited a robust response when activated with lipopolysaccharide (LPS), G5 or treated with ceftriaxone in many parameters evaluated. These parameters include increased expression of GLT-1 and GLAST the two major astrocytic glutamate transporters, accompanied by a marked increase in the astrocytic glutamate clearance and up-regulation of neurtrophic factor expression. However, not only do un-treated SOD1G93A astrocytes take up glutamate less efficiently, but in response to activation they show no further increase in any of the glutamatergic parameters evaluated. Furthermore, activation of wild-type astrocytes, but not SOD1G93A astrocytes, improved their ability to protect the motor neuron cell line NSC-34 from glutamate induced excitotoxicity. Our data indicates that altered astrocyte activation may well be pivotal to the pathogenesis of ALS. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:312 / 326
页数:15
相关论文
共 50 条
  • [31] Maintenance of the rat transgenic model of familial amyotrophic lateral sclerosis expressing human SOD1G93A mutation
    Herbik, Magdalena A.
    Chrapusta, Stanislaw J.
    Kowalczyk, Anna
    Grieb, Pawel
    FOLIA NEUROPATHOLOGICA, 2006, 44 (03) : 149 - 153
  • [32] Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis
    Zhang, Xiaojie
    Li, Liang
    Chen, Sheng
    Yang, Dehua
    Wang, Yi
    Zhang, Xin
    Wang, Zheng
    Le, Weidong
    AUTOPHAGY, 2011, 7 (04) : 412 - 425
  • [33] Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1G93A mouse model of Amyotrophic Lateral Sclerosis
    Alves, Chrystian J.
    Maximino, Jessica R.
    Chadi, Gerson
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2015, 9
  • [34] "Preconditioning" with latrepirdine, an adenosine 5′-monophosphate-activated protein kinase activator, delays amyotrophic lateral sclerosis progression in SOD1G93A mice
    Coughlan, Karen S.
    Mitchem, Mollie R.
    Hogg, Marion C.
    Prehn, Jochen H. M.
    NEUROBIOLOGY OF AGING, 2015, 36 (02) : 1140 - 1150
  • [35] Differential activation of neuronal and glial STAT3 in the spinal cord of the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Ohgomori, Tomohiro
    Yamasaki, Ryo
    Takeuchi, Hideyuki
    Kadomatsu, Kenji
    Kira, Jun-ichi
    Jinno, Shozo
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2017, 46 (04) : 2001 - 2014
  • [36] Evolution of the neurochemical profiles in the G93A-SOD1 mouse model of amyotrophic lateral sclerosis
    Lei, Hongxia
    Dirren, Elisabeth
    Poitry-Yamate, Carole
    Schneider, Bernard L.
    Gruetter, Rolf
    Aebischer, Patrick
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2019, 39 (07) : 1283 - 1298
  • [37] Transcranial Focused Ultrasound Modifies Disease Progression in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Hong, Zhongqiu
    Yi, Shasha
    Deng, Miaoqin
    Zhong, Yongsheng
    Zhao, Yun
    Li, Lili
    Zhou, Hui
    Xiao, Yang
    Hu, Xiquan
    Niu, Lili
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2025, 72 (02) : 191 - 201
  • [38] DIFFERENTIAL INVOLVEMENT OF VESICULAR AND GLIAL GLUTAMATE TRANSPORTERS AROUND SPINAL α-MOTONEURONS IN THE PATHOGENESIS OF SOD1G93A MOUSE MODEL OF AMYOTROPHIC LATERAL SCLEROSIS
    Ohgomori, Tomohiro
    Yamasaki, Ryo
    Takeuchi, Hideyuki
    Kadomatsu, Kenji
    Kira, Jun-Ichi
    Jinno, Shozo
    NEUROSCIENCE, 2017, 356 : 114 - 124
  • [39] Amyloid precursor protein (APP) contributes to pathology in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Bryson, J. Barney
    Hobbs, Carl
    Parsons, Michael J.
    Bosch, Karen D.
    Pandraud, Amelie
    Walsh, Frank S.
    Doherty, Patrick
    Greensmith, Linda
    HUMAN MOLECULAR GENETICS, 2012, 21 (17) : 3871 - 3882
  • [40] Cromolyn sodium delays disease onset and is neuroprotective in the SOD1G93A Mouse Model of amyotrophic lateral sclerosis
    Granucci, Eric J.
    Griciuc, Ana
    Mueller, Kaly A.
    Mills, Alexandra N.
    Le, Hoang
    Dios, Amanda M.
    McGinty, Danielle
    Pereira, Joao
    Elmaleh, David
    Berry, James D.
    Paganoni, Sabrina
    Cudkowicz, Merit E.
    Tanzi, Rudolph E.
    Sadri-Vakili, Ghazaleh
    SCIENTIFIC REPORTS, 2019, 9 (1)