Altered astrocytic response to activation in SOD1G93A mice and its implications on amyotrophic lateral sclerosis pathogenesis

被引:32
|
作者
Benkler, Chen [1 ]
Ben-Zur, Tali [1 ]
Barhum, Yael [1 ]
Offen, Daniel [1 ]
机构
[1] Tel Aviv Univ, Rabin Med Ctr, Felsenstein Med Res Ctr, Sackler Sch Med,Sackler Fac Med,Neurosci Lab, IL-49100 Petah Tiqwa, Israel
关键词
ALS; GLT1; EAAT2; neurotrophic factor; glutamate; reactive astrocytes; motor neurons; GROWTH-FACTOR-I; MOTOR-NEURON DISEASE; NEUROTROPHIC FACTOR CNTF; SPINAL-CORD; GLUTAMATE TRANSPORTERS; SUPEROXIDE-DISMUTASE; REACTIVE ASTROCYTES; RAT MODEL; NEURODEGENERATIVE DISEASE; NONNEURONAL CELLS;
D O I
10.1002/glia.22428
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Amyotrophic Lateral Sclerosis (ALS) is a fatal, rapidly progressive, neurodegenerative disease caused by motor neuron degeneration. Despite extensive efforts, the underlying cause of ALS and the path of neurodegeneration remain elusive. Astrocyte activation occurs in response to central nervous system (CNS) insult and is considered a double edged sword in many pathological conditions. We propose that reduced glutamatergic and trophic response of astrocytes to activation may, over time, lead to accumulative CNS damage, thus facilitating neurodegeneration. We found that astrocytes derived from the SOD1G93A ALS mouse model exhibit a reduced glutamatergic and trophic response to specific activations compared to their wild-type counterparts. Wild-type astrocytes exhibited a robust response when activated with lipopolysaccharide (LPS), G5 or treated with ceftriaxone in many parameters evaluated. These parameters include increased expression of GLT-1 and GLAST the two major astrocytic glutamate transporters, accompanied by a marked increase in the astrocytic glutamate clearance and up-regulation of neurtrophic factor expression. However, not only do un-treated SOD1G93A astrocytes take up glutamate less efficiently, but in response to activation they show no further increase in any of the glutamatergic parameters evaluated. Furthermore, activation of wild-type astrocytes, but not SOD1G93A astrocytes, improved their ability to protect the motor neuron cell line NSC-34 from glutamate induced excitotoxicity. Our data indicates that altered astrocyte activation may well be pivotal to the pathogenesis of ALS. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:312 / 326
页数:15
相关论文
共 50 条
  • [11] Measuring Neuromuscular Junction Functionality in the SOD1G93A Animal Model of Amyotrophic Lateral Sclerosis
    Rizzuto, Emanuele
    Pisu, Simona
    Musaro, Antonio
    Del Prete, Zaccaria
    ANNALS OF BIOMEDICAL ENGINEERING, 2015, 43 (09) : 2196 - 2206
  • [12] Measuring Neuromuscular Junction Functionality in the SOD1G93A Animal Model of Amyotrophic Lateral Sclerosis
    Emanuele Rizzuto
    Simona Pisu
    Antonio Musarò
    Zaccaria Del Prete
    Annals of Biomedical Engineering, 2015, 43 : 2196 - 2206
  • [13] Amelioration of Amyotrophic Lateral Sclerosis in SOD1G93A Mice by M2 Microglia from Transplanted Marrow
    Epperly, Michael W.
    Fisher, Renee
    Rigatti, Lora
    Watkins, Simon
    Zhang, Xichen
    Hou, Wen
    Shields, Donna
    Franicola, Darcy
    Bayir, Hulya
    Wang, Hong
    Thermozier, Stephanie
    Henderson, Andrew
    Donnelly, Christopher
    Wipf, Peter
    Greenberger, Joel S.
    IN VIVO, 2019, 33 (03): : 675 - 688
  • [14] Trimetazidine Improves Mitochondrial Dysfunction in SOD1G93A Cellular Models of Amyotrophic Lateral Sclerosis through Autophagy Activation
    Salvatori, Illari
    Nesci, Valentina
    Spalloni, Alida
    Marabitti, Veronica
    Muzzi, Maurizio
    Zenuni, Henri
    Scaricamazza, Silvia
    Rosina, Marco
    Fenili, Gianmarco
    Goglia, Mariangela
    Boffa, Laura
    Massa, Roberto
    Moreno, Sandra
    Mercuri, Nicola Biagio
    Nazio, Francesca
    Longone, Patrizia
    Ferri, Alberto
    Valle, Cristiana
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [15] Spinal Cord Metabolic Signatures in Models of Fast- and Slow-Progressing SOD1G93A Amyotrophic Lateral Sclerosis
    Valbuena, Gabriel N.
    Cantoni, Lavinia
    Tortarolo, Massimo
    Bendotti, Caterina
    Keun, Hector C.
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [16] Optimised and Rapid Pre-clinical Screening in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis (ALS)
    Mead, Richard J.
    Bennett, Ellen J.
    Kennerley, Aneurin J.
    Sharp, Paul
    Sunyach, Claire
    Kasher, Paul
    Berwick, Jason
    Pettmann, Brigitte
    Battaglia, Guiseppe
    Azzouz, Mimoun
    Grierson, Andrew
    Shaw, Pamela J.
    PLOS ONE, 2011, 6 (08):
  • [17] Fingerprint analysis of Huolingshengji Formula and its neuroprotective effects in SOD1G93A mouse model of amyotrophic lateral sclerosis
    Zhou, Qinming
    Wang, Youjie
    Zhang, Jingjing
    Shao, Yaping
    Li, Song
    Wang, Yuan
    Cai, Huaibin
    Feng, Yi
    Le, Weidong
    SCIENTIFIC REPORTS, 2018, 8
  • [18] EXCITABILITY PROPERTIES OF MOUSE MOTOR AXONS IN THE MUTANT SOD1G93A MODEL OF AMYOTROPHIC LATERAL SCLEROSIS
    Boerio, Delphine
    Kalmar, Bernadett
    Greensmith, Linda
    Bostock, Hugh
    MUSCLE & NERVE, 2010, 41 (06) : 774 - 784
  • [19] Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1G93A) transgenic amyotrophic lateral sclerosis (ALS) mice
    Lee, Jae Chul
    Jin, Younggeon
    Jin, Juyoun
    Kang, Bong Gu
    Nam, Do-Hyun
    Joo, Kyeung Min
    Cha, Choong Ik
    NEUROLOGICAL RESEARCH, 2011, 33 (01) : 33 - 37
  • [20] MPO/HOCl Facilitates Apoptosis and Ferroptosis in the SOD1G93A Motor Neuron of Amyotrophic Lateral Sclerosis
    Peng, Jialing
    Pan, Jingrui
    Mo, Jingjing
    Peng, Ying
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2022, 2022