SCL(EQ): SCL for First-Order Logic with Equality

被引:5
|
作者
Leidinger, Hendrik [1 ,2 ]
Weidenbach, Christoph [1 ]
机构
[1] Max Planck Inst Informat, Saarbrucken, Germany
[2] Grad Sch Comp Sci, Saarbrucken, Germany
来源
关键词
First-order logic with equality; Term rewriting; Model-based reasoning; MODEL EVOLUTION;
D O I
10.1007/978-3-031-10769-6_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new calculus SCL(EQ) for first-order logic with equality that only learns non-redundant clauses. Following the idea of CDCL (Conflict Driven Clause Learning) and SCL (Clause Learning from Simple Models) a ground literal model assumption is used to guide inferences that are then guaranteed to be non-redundant. Redundancy is defined with respect to a dynamically changing ordering derived from the ground literal model assumption. We prove SCL(EQ) sound and complete and provide examples where our calculus improves on superposition.
引用
收藏
页码:228 / 247
页数:20
相关论文
共 50 条
  • [31] From First-Order Logic to Assertional Logic
    Zhou, Yi
    ARTIFICIAL GENERAL INTELLIGENCE: 10TH INTERNATIONAL CONFERENCE, AGI 2017, 2017, 10414 : 87 - 97
  • [32] Design of an SCL logic based Current Comparator
    Bhatia, Veepsa
    Pandey, Neeta
    Prasanthi, Sri Ranjani
    2018 IEEE 61ST INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2018, : 1134 - 1137
  • [33] Sperner spaces and first-order logic
    Blass, A
    Pambuccian, V
    MATHEMATICAL LOGIC QUARTERLY, 2003, 49 (02) : 111 - 114
  • [34] First-order conditional logic revisited
    Friedman, N
    Halpern, JY
    Koller, D
    PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, 1996, : 1305 - 1312
  • [35] DATALOG VS FIRST-ORDER LOGIC
    AJTAI, M
    GUREVICH, Y
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 49 (03) : 562 - 588
  • [36] First-order classical modal logic
    Arló-Costa H.
    Pacuit E.
    Studia Logica, 2006, 84 (2) : 171 - 210
  • [37] First-Order da Costa Logic
    Graham Priest
    Studia Logica, 2011, 97 : 183 - 198
  • [38] A denotational semantics for first-order logic
    Apt, KR
    COMPUTATIONAL LOGIC - CL 2000, 2000, 1861 : 53 - 69
  • [39] On First-Order Logic and CPDA Graphs
    Christopher H. Broadbent
    Theory of Computing Systems, 2014, 55 : 771 - 832
  • [40] Combining Probability and First-Order Logic
    Leiva, Mario A.
    Garcia, Alejandro J.
    Shakarian, Paulo
    Simari, Gerardo I.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (345): : 4 - 4