On Entanglement Breaking Channels for Infinite Dimensional Quantum Systems

被引:5
|
作者
He, Kan [1 ]
机构
[1] Taiyuan Univ Technol, Inst Math, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum channels; Positive maps; Entanglement; Extreme points;
D O I
10.1007/s10773-012-1303-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The topic of entanglement breaking channels plays an important role in quantum information. Horodecki et al. (Rev. Math. Phys. 15:629-641, 2003) gave a complete characterization of entanglement breaking channels for finite dimensional quantum systems. In the note, we will generalize the results in Horodecki et al. (Rev. Math. Phys. 15:629-641, 2003) to the infinite dimensional case. We first generalized the positive map criterion of the entanglement breaking channel from the finite dimensional case to the infinite dimensional case. As a generalization of entanglement breaking channels for finite dimensional quantum systems, the topic of the strong entanglement breaking channel for arbitrary (finite or infinite) dimensional systems is putted forward. We obtain the operator sum representation of the strong entanglement breaking quantum channel. Applying this operator sum representation, we characterize a category of extreme points of the convex set of all strong entanglement breaking channels, which generalizes corresponding results in the finite dimensional case from Horodecki et al. (Rev. Math. Phys. 15:629-641, 2003).
引用
收藏
页码:1886 / 1892
页数:7
相关论文
共 50 条
  • [41] Entanglement in quantum dissipative Ising spin systems
    Lozano, G. S.
    Lozza, H. F.
    Daroca, D. Perez
    PHYSICA B-CONDENSED MATTER, 2007, 398 (02) : 455 - 459
  • [42] Experimental quantification of entanglement in quantum spin systems
    Das, Diptaranjan
    Chakraborty, Tanmoy
    Sen, Tamal K.
    Singh, Harkirat
    Mandal, Swadhin K.
    Mitra, Chiranjib
    75 YEARS OF QUANTUM ENTANGLEMENT: FOUNDATIONS AND INFORMATION THEORETIC APPLICATIONS, 2011, 1384 : 261 - 269
  • [43] Entanglement in Higher-Radix Quantum Systems
    Smith, Kaitlin N.
    Thornton, Mitchell A.
    2019 IEEE 49TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2019, : 114 - 119
  • [44] Quantum Information Theory in Infinite Dimensions with Application to Optical Channels
    Sharma, Vinod
    Shenoy, Konchady Gautam
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2023, 103 (02) : 527 - 546
  • [45] Quantum Information Theory in Infinite Dimensions with Application to Optical Channels
    Vinod Sharma
    Konchady Gautam Shenoy
    Journal of the Indian Institute of Science, 2023, 103 : 527 - 546
  • [46] Decoherence, classical properties and entanglement of quantum systems
    Blanchard, P
    Olkiewicz, R
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (1-2): : 124 - 127
  • [47] Entanglement, Haag-duality and type properties of infinite quantum spin chains
    Keyl, M.
    Matsui, T.
    Schlingemann, D.
    Werner, R. F.
    REVIEWS IN MATHEMATICAL PHYSICS, 2006, 18 (09) : 935 - 970
  • [48] Amortized entanglement of a quantum channel and approximately teleportation-simulable channels
    Kaur, Eneet
    Wilde, Mark M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (03)
  • [49] Operational Characterization of Infinite-Dimensional Quantum Resources
    Haapasalo, Erkka
    Kraft, Tristan
    Pellonpaa, Juha-Pekka
    Uola, Roope
    PHYSICAL REVIEW LETTERS, 2021, 127 (25)
  • [50] Entropy exchange for infinite-dimensional systems
    Duan, Zhoubo
    Hou, Jinchuan
    SCIENTIFIC REPORTS, 2017, 7