On Entanglement Breaking Channels for Infinite Dimensional Quantum Systems

被引:5
|
作者
He, Kan [1 ]
机构
[1] Taiyuan Univ Technol, Inst Math, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum channels; Positive maps; Entanglement; Extreme points;
D O I
10.1007/s10773-012-1303-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The topic of entanglement breaking channels plays an important role in quantum information. Horodecki et al. (Rev. Math. Phys. 15:629-641, 2003) gave a complete characterization of entanglement breaking channels for finite dimensional quantum systems. In the note, we will generalize the results in Horodecki et al. (Rev. Math. Phys. 15:629-641, 2003) to the infinite dimensional case. We first generalized the positive map criterion of the entanglement breaking channel from the finite dimensional case to the infinite dimensional case. As a generalization of entanglement breaking channels for finite dimensional quantum systems, the topic of the strong entanglement breaking channel for arbitrary (finite or infinite) dimensional systems is putted forward. We obtain the operator sum representation of the strong entanglement breaking quantum channel. Applying this operator sum representation, we characterize a category of extreme points of the convex set of all strong entanglement breaking channels, which generalizes corresponding results in the finite dimensional case from Horodecki et al. (Rev. Math. Phys. 15:629-641, 2003).
引用
收藏
页码:1886 / 1892
页数:7
相关论文
共 50 条
  • [31] A perspective on quantum entanglement in optomechanical systems
    Tang, Jin-Dao
    Cai, Qi-Zhi
    Cheng, Ze-Di
    Xu, Nan
    Peng, Guang-Yu
    Chen, Pei-Qin
    Wang, De-Guang
    Xia, Zi-Wei
    Wang, You
    Song, Hai-Zhi
    Zhou, Qiang
    Deng, Guang-Wei
    PHYSICS LETTERS A, 2022, 429
  • [32] \A quantum router for high-dimensional entanglement
    Erhard, Manuel
    Malik, Mehul
    Zeilinger, Anton
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (01):
  • [33] Quantum entanglement in dense multiqubit systems
    Macovei, Mihai
    Evers, Joerg
    Keitel, Christoph H.
    JOURNAL OF MODERN OPTICS, 2010, 57 (14-15) : 1287 - 1292
  • [34] Degradable strong entanglement breaking maps
    Devendra, Repana
    Sapra, Gunjan
    Sumesh, K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 703 : 302 - 328
  • [35] REALIGNMENT OPERATION AND CCNR CRITERION OF SEPARABILITY FOR STATES IN INFINITE-DIMENSIONAL QUANTUM SYSTEMS
    Guo, Yu
    Hou, Jinchuan
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (01) : 25 - 40
  • [36] On entanglement distillation and quantum error correction for unknown states and channels
    Horodecki, P
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2003, 1 (04): : 695 - 707
  • [37] Abrupt decay of entanglement and quantum communication through noise channels
    Metwally, Nasser
    QUANTUM INFORMATION PROCESSING, 2010, 9 (04) : 429 - 440
  • [38] Quantum teleportation, entanglement, and Bell nonlocality in correlated noisy channels
    Wang, Zhan-Yun
    Qin, Zhi-Yong
    LASER PHYSICS, 2020, 30 (05)
  • [39] Faithful sharing of multipartite entanglement over noisy quantum channels
    Lee, S
    Choi, S
    Chi, DP
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (04) : 1119 - 1122
  • [40] Abrupt decay of entanglement and quantum communication through noise channels
    Nasser Metwally
    Quantum Information Processing, 2010, 9 : 429 - 440