On automorphism groups of Toeplitz subshifts

被引:13
|
作者
Donoso, Sebastian [1 ,2 ]
Durand, Fabien [3 ]
Maass, Alejandro [4 ,5 ]
Petite, Samuel [3 ]
机构
[1] Univ Chile, CNRS UMI 2807, Ctr Modelamiento Matemat, Santiago, Chile
[2] Univ OHiggins, Inst Ciencias Ingn, Rancagua, Chile
[3] Univ Picardie Jules Verne, CNRS UMR 7352, Lab Amienois Math Fondamentales & Appl, Amiens, France
[4] Univ Chile, CNRS UMI 2807, Dept Ingn Matemat, Santiago, Chile
[5] Univ Chile, CNRS UMI 2807, Ctr Modelamiento Matemat, Santiago, Chile
关键词
Toeplitz subshifts; automorphism group; complexity function; coalescence;
D O I
10.19086/da.1832
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study automorphisms of Toeplitz subshifts. Such groups are abelian and any finitely generated torsion subgroup is finite and cyclic. When the complexity is non-superlinear, we prove that the automorphism group is, modulo a finite cyclic group, generated by a unique root of the shift. In the subquadratic complexity case, we show that the automorphism group modulo the torsion is generated by the roots of the shift map and that the result of the non-superlinear case is optimal. Namely, for any epsilon > 0 we construct examples of minimal Toeplitz subshifts with complexity bounded by Cn(1+epsilon) whose automorphism groups are not finitely generated Finally, we observe the coalescence and the automorphism group give no restriction on the complexity since we provide a family of coalescent Toeplitz subshifts with positive entropy such that their automorphism groups are arbitrary finitely generated infinite abelian groups with cyclic torsion subgroup (eventually restricted to powers of the shift).
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [41] Automorphism groups of axial algebras
    Gorshkov, I. B.
    McInroy, J.
    Shumba, T. M. Mudziiri
    Shpectorov, S.
    JOURNAL OF ALGEBRA, 2025, 661 : 657 - 712
  • [42] On automorphism groups of Hardy algebras
    Ardila, Rene
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (04) : 1170 - 1183
  • [43] Polytopes with Preassigned Automorphism Groups
    Schulte, Egon
    Williams, Gordon Ian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (02) : 444 - 458
  • [44] On automorphism groups of affine surfaces
    Kovalenko, Sergei
    Perepechko, Alexander
    Zaidenberg, Mikhail
    ALGEBRAIC VARIETIES AND AUTOMORPHISM GROUPS, 2017, 75 : 207 - 286
  • [45] Polytopes with Preassigned Automorphism Groups
    Egon Schulte
    Gordon Ian Williams
    Discrete & Computational Geometry, 2015, 54 : 444 - 458
  • [46] Automorphism groups of Alexander quandles
    Hou, Xiang-dong
    JOURNAL OF ALGEBRA, 2011, 344 (01) : 373 - 385
  • [47] Automorphism groups of rational surfaces
    Uehara, Takato
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (01) : 411 - 422
  • [48] Automorphism groups of semidirect products
    Zhou, Fang
    Liu, Heguo
    ARCHIV DER MATHEMATIK, 2008, 91 (03) : 193 - 198
  • [49] Automorphism groups of designs with λ=1
    Kantor, William M.
    DISCRETE MATHEMATICS, 2019, 342 (10) : 2886 - 2892
  • [50] On automorphism groups of Hardy algebras
    Rene Ardila
    Annals of Functional Analysis, 2020, 11 : 1170 - 1183