On automorphism groups of Toeplitz subshifts

被引:13
|
作者
Donoso, Sebastian [1 ,2 ]
Durand, Fabien [3 ]
Maass, Alejandro [4 ,5 ]
Petite, Samuel [3 ]
机构
[1] Univ Chile, CNRS UMI 2807, Ctr Modelamiento Matemat, Santiago, Chile
[2] Univ OHiggins, Inst Ciencias Ingn, Rancagua, Chile
[3] Univ Picardie Jules Verne, CNRS UMR 7352, Lab Amienois Math Fondamentales & Appl, Amiens, France
[4] Univ Chile, CNRS UMI 2807, Dept Ingn Matemat, Santiago, Chile
[5] Univ Chile, CNRS UMI 2807, Ctr Modelamiento Matemat, Santiago, Chile
关键词
Toeplitz subshifts; automorphism group; complexity function; coalescence;
D O I
10.19086/da.1832
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study automorphisms of Toeplitz subshifts. Such groups are abelian and any finitely generated torsion subgroup is finite and cyclic. When the complexity is non-superlinear, we prove that the automorphism group is, modulo a finite cyclic group, generated by a unique root of the shift. In the subquadratic complexity case, we show that the automorphism group modulo the torsion is generated by the roots of the shift map and that the result of the non-superlinear case is optimal. Namely, for any epsilon > 0 we construct examples of minimal Toeplitz subshifts with complexity bounded by Cn(1+epsilon) whose automorphism groups are not finitely generated Finally, we observe the coalescence and the automorphism group give no restriction on the complexity since we provide a family of coalescent Toeplitz subshifts with positive entropy such that their automorphism groups are arbitrary finitely generated infinite abelian groups with cyclic torsion subgroup (eventually restricted to powers of the shift).
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [31] Automorphism Groups in Polyhedral Graphs
    Ghorbani, Modjtaba
    Alidehi-Ravandi, Razie
    Dehmer, Matthias
    SYMMETRY-BASEL, 2024, 16 (09):
  • [32] Automorphism groups of the Pancake graphs
    Deng, Yun-Ping
    Zhang, Xiao-Dong
    INFORMATION PROCESSING LETTERS, 2012, 112 (07) : 264 - 266
  • [33] Nonfinitary Algebras and Their Automorphism Groups
    I. N. Zotov
    V. M. Levchuk
    Siberian Mathematical Journal, 2022, 63 : 87 - 96
  • [34] Automorphism groups of semidirect products
    Fang Zhou
    Heguo Liu
    Archiv der Mathematik, 2008, 91 : 193 - 198
  • [35] On automorphism groups of graph truncations
    Alspach, Brian
    Dobson, Edward
    ARS MATHEMATICA CONTEMPORANEA, 2015, 8 (01) : 215 - 223
  • [36] On Automorphism Groups of Arguesian Lattices
    C. Herrmann
    Acta Mathematica Hungarica, 1998, 79 : 35 - 38
  • [37] NONFINITARY ALGEBRAS AND THEIR AUTOMORPHISM GROUPS
    Zotov, I. N.
    Levchuk, V. M.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (01) : 87 - 96
  • [38] On homogeneous semilattices and their automorphism groups
    Droste, M
    Kuske, D
    Truss, JK
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1999, 16 (01): : 31 - 56
  • [39] On Homogeneous Semilattices and Their Automorphism Groups
    Manfred Droste
    Dietrich Kuske
    John K. Truss
    Order, 1999, 16 : 31 - 56
  • [40] Automorphism groups of centralizers of idempotents
    Araújo, J
    Konieczny, J
    JOURNAL OF ALGEBRA, 2003, 269 (01) : 227 - 239