Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data

被引:70
作者
Calgaro, Matteo [1 ]
Romualdi, Chiara [2 ]
Waldron, Levi [3 ,4 ]
Risso, Davide [5 ]
Vitulo, Nicola [1 ]
机构
[1] Univ Verona, Dept Biotechnol, Verona, Italy
[2] Univ Padua, Dept Biol, Padua, Italy
[3] CUNY, Grad Sch Publ Hlth & Hlth Policy, New York, NY 10021 USA
[4] CUNY, Inst Implementat Sci Publ Hlth, New York, NY 10021 USA
[5] Univ Padua, Dept Stat Sci, Padua, Italy
基金
美国国家卫生研究院;
关键词
Microbiome; Benchmark; Single-cell; Metagenomics; Differential abundance; BACTERIAL DIVERSITY; SUPRAGINGIVAL;
D O I
10.1186/s13059-020-02104-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThe correct identification of differentially abundant microbial taxa between experimental conditions is a methodological and computational challenge. Recent work has produced methods to deal with the high sparsity and compositionality characteristic of microbiome data, but independent benchmarks comparing these to alternatives developed for RNA-seq data analysis are lacking.ResultsWe compare methods developed for single-cell and bulk RNA-seq, and specifically for microbiome data, in terms of suitability of distributional assumptions, ability to control false discoveries, concordance, power, and correct identification of differentially abundant genera. We benchmark these methods using 100 manually curated datasets from 16S and whole metagenome shotgun sequencing.ConclusionsThe multivariate and compositional methods developed specifically for microbiome analysis did not outperform univariate methods developed for differential expression analysis of RNA-seq data. We recommend a careful exploratory data analysis prior to application of any inferential model and we present a framework to help scientists make an informed choice of analysis methods in a dataset-specific manner.
引用
收藏
页数:31
相关论文
共 54 条
[31]  
Paulson JN, 2013, NAT METHODS, V10, P1200, DOI [10.1038/NMETH.2658, 10.1038/nmeth.2658]
[32]   Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods [J].
Quinn, Thomas P. ;
Crowley, Tamsyn M. ;
Richardson, Mark F. .
BMC BIOINFORMATICS, 2018, 19
[33]   Understanding sequencing data as compositions: an outlook and review [J].
Quinn, Thomas P. ;
Erb, Ionas ;
Richardson, Mark F. ;
Crowley, Tamsyn M. .
BIOINFORMATICS, 2018, 34 (16) :2870-2878
[34]   A general and flexible method for signal extraction from single-cell RNA-seq data [J].
Risso, Davide ;
Perraudeau, Fanny ;
Gribkova, Svetlana ;
Dudoit, Sandrine ;
Vert, Jean-Philippe .
NATURE COMMUNICATIONS, 2018, 9
[35]   Balances: a New Perspective for Microbiome Analysis [J].
Rivera-Pinto, J. ;
Egozcue, J. J. ;
Pawlowsky-Glahn, V ;
Paredes, R. ;
Noguera-Julian, M. ;
Calle, M. L. .
MSYSTEMS, 2018, 3 (04)
[36]   A scaling normalization method for differential expression analysis of RNA-seq data [J].
Robinson, Mark D. ;
Oshlack, Alicia .
GENOME BIOLOGY, 2010, 11 (03)
[37]   edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J].
Robinson, Mark D. ;
McCarthy, Davis J. ;
Smyth, Gordon K. .
BIOINFORMATICS, 2010, 26 (01) :139-140
[38]  
Russel J., 2018, DAtest: a framework for choosing differential abundance or expression method, DOI DOI 10.1101/241802
[39]   HMP16SData: Efficient Access to the Human Microbiome Project Through Bioconductor [J].
Schiffer, Lucas ;
Azhar, Rimsha ;
Shepherd, Lori ;
Ramos, Marcel ;
Geistlinger, Ludwig ;
Huttenhower, Curtis ;
Dowd, Jennifer B. ;
Segata, Nicola ;
Waldron, Levi .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2019, 188 (06) :1023-1026
[40]  
Siddhartha Mandal Siddhartha Mandal, 2015, Microbial Ecology in Health and Disease, V26, P27663