Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data

被引:70
作者
Calgaro, Matteo [1 ]
Romualdi, Chiara [2 ]
Waldron, Levi [3 ,4 ]
Risso, Davide [5 ]
Vitulo, Nicola [1 ]
机构
[1] Univ Verona, Dept Biotechnol, Verona, Italy
[2] Univ Padua, Dept Biol, Padua, Italy
[3] CUNY, Grad Sch Publ Hlth & Hlth Policy, New York, NY 10021 USA
[4] CUNY, Inst Implementat Sci Publ Hlth, New York, NY 10021 USA
[5] Univ Padua, Dept Stat Sci, Padua, Italy
基金
美国国家卫生研究院;
关键词
Microbiome; Benchmark; Single-cell; Metagenomics; Differential abundance; BACTERIAL DIVERSITY; SUPRAGINGIVAL;
D O I
10.1186/s13059-020-02104-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThe correct identification of differentially abundant microbial taxa between experimental conditions is a methodological and computational challenge. Recent work has produced methods to deal with the high sparsity and compositionality characteristic of microbiome data, but independent benchmarks comparing these to alternatives developed for RNA-seq data analysis are lacking.ResultsWe compare methods developed for single-cell and bulk RNA-seq, and specifically for microbiome data, in terms of suitability of distributional assumptions, ability to control false discoveries, concordance, power, and correct identification of differentially abundant genera. We benchmark these methods using 100 manually curated datasets from 16S and whole metagenome shotgun sequencing.ConclusionsThe multivariate and compositional methods developed specifically for microbiome analysis did not outperform univariate methods developed for differential expression analysis of RNA-seq data. We recommend a careful exploratory data analysis prior to application of any inferential model and we present a framework to help scientists make an informed choice of analysis methods in a dataset-specific manner.
引用
收藏
页数:31
相关论文
共 54 条
[1]  
Aitchison John., 1982, The Statistical Analysis of Compositional Data
[2]  
[Anonymous], 2020, BIOC
[3]   Tobacco exposure associated with oral microbiota oxygen utilization in the New York City Health and Nutrition Examination Study [J].
Beghini, Francesco ;
Renson, Audrey ;
Zolnik, Christine P. ;
Geistlinger, Ludwig ;
Usyk, Mykhaylo ;
Moody, Thomas U. ;
Thorpe, Lorna ;
Dowd, Jennifer B. ;
Burk, Robert ;
Segata, Nicola ;
Jones, Heidi E. ;
Waldron, Levi .
ANNALS OF EPIDEMIOLOGY, 2019, 34 :18-25
[4]  
Bogomolov M., 2017, Testing hypotheses on a tree: new error rates and controlling strategies
[5]   Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments [J].
Bullard, James H. ;
Purdom, Elizabeth ;
Hansen, Kasper D. ;
Dudoit, Sandrine .
BMC BIOINFORMATICS, 2010, 11
[6]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[7]  
Calgaro M., 2020, MCALGARO93 SC2META, DOI [10.5281/zenodo.3942108, DOI 10.5281/ZENODO.3942108]
[8]   Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls [J].
Castro-Nallar, Eduardo ;
Bendall, Matthew L. ;
Perez-Losada, Marcos ;
Sabuncyan, Sarven ;
Severance, Emily G. ;
Dickerson, Faith B. ;
Schroeder, Jennifer R. ;
Yolken, Robert H. ;
Crandall, Keith A. .
PEERJ, 2015, 3
[9]   Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis [J].
Fernandes, Andrew D. ;
Reid, Jennifer N. S. ;
Macklaim, Jean M. ;
McMurrough, Thomas A. ;
Edgell, David R. ;
Gloor, Gregory B. .
MICROBIOME, 2014, 2
[10]   MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data [J].
Finak, Greg ;
McDavid, Andrew ;
Yajima, Masanao ;
Deng, Jingyuan ;
Gersuk, Vivian ;
Shalek, Alex K. ;
Slichter, Chloe K. ;
Miller, Hannah W. ;
McElrath, M. Juliana ;
Prlic, Martin ;
Linsley, Peter S. ;
Gottardo, Raphael .
GENOME BIOLOGY, 2015, 16