Overexpression of a rice long-chain base kinase gene OsLCBK1 in tobacco improves oxidative stress tolerance

被引:8
|
作者
Zhang, Huijuan [1 ]
Huang, Lei [1 ]
Li, Xiaohui [1 ]
Ouyang, Zhigang [1 ]
Yu, Yongmei [1 ]
Li, Dayong [1 ]
Song, Fengming [1 ]
机构
[1] Zhejiang Univ, Inst Biotechnol, State Key Lab Rice Biol, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Abscisic acid (ABA); long-chain base kinase (LCBK); long-chain base 1-phosphates (LCBPs); oxidative stress tolerance; transgenic tobacco; LIPID TRANSFER PROTEIN; PROGRAMMED CELL-DEATH; FUNCTIONAL-CHARACTERIZATION; ABIOTIC STRESS; ARABIDOPSIS-THALIANA; SPHINGOSINE KINASE; SIGNAL-TRANSDUCTION; SALT STRESS; PLANTS; DROUGHT;
D O I
10.5511/plantbiotechnology.12.1101b
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sphingolipids and their metabolites including long-chain bases (LCBs) and long-chain base 1-phosphates (LCBPs) have been shown to be involved in regulation of various aspects of biological processes in plants. However, little is known about the biological function of LCB kinases (LCBKs), which catalyze the phosphorylation of LCBs to form LCBPs in plant abiotic stress tolerance. In the present study, we performed a functional analysis in transgenic tobacco to explore the possible involvement of a rice LCBK gene OsLCBK1 in abiotic stress tolerance. Root elongation of the transgenic tobacco seedlings with constitutive overexpression of OsLCBK1 was less sensitive to exogenous abscisic acid as compared with the vector-transformed seedlings. The OsLCBK1-overexpressing transgenic tobacco plants showed increased tolerance against oxidative stress after treatment with methyl viologen or H2O2, and up-regulated expression of oxidative stress-related genes. However, the OsLCBK1-overexpressing transgenic tobacco plants showed similar phenotype as vector-transformed plants in response to salt stress and had no change in expression of salt stress-related genes. Our results suggest that OsLCBK1, an enzyme involved in synthesis of LCBPs, may be involved in ABA response and has functions in regulation of oxidative stress tolerance in plants.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
  • [41] Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco
    Mukhopadhyay, A
    Vij, S
    Tyagi, AK
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (16) : 6309 - 6314
  • [42] Overexpression of dehydroascorbate reductase gene IbDHAR1 improves the tolerance to abiotic stress in sweet potato
    Cheng, Qirui
    Zou, Xuan
    Wang, Yuan
    Yang, Zhe
    Qiu, Xiangpo
    Wang, Sijie
    Yang, Yanxin
    Yang, Dongjing
    Kim, Ho Soo
    Jia, Xiaoyun
    Li, Lingzhi
    Kwak, Sang-Soo
    Wang, Wenbin
    TRANSGENIC RESEARCH, 2024, 33 (05) : 427 - 443
  • [43] Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice
    Kanneganti, Vydehi
    Gupta, Aditya Kumar
    PLANT MOLECULAR BIOLOGY, 2008, 66 (05) : 445 - 462
  • [44] Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice
    Vydehi Kanneganti
    Aditya Kumar Gupta
    Plant Molecular Biology, 2008, 66 : 445 - 462
  • [45] Overexpression of BrCIPK1 Gene Enhances Abiotic Stress Tolerance by Increasing Proline Biosynthesis in Rice
    Abdula, Sailila E.
    Lee, Hye-Jung
    Ryu, Hojin
    Kang, Kwon Kyoo
    Nou, Illsup
    Sorrells, Mark E.
    Cho, Yong-Gu
    PLANT MOLECULAR BIOLOGY REPORTER, 2016, 34 (02) : 501 - 511
  • [46] Overexpression of BrCIPK1 Gene Enhances Abiotic Stress Tolerance by Increasing Proline Biosynthesis in Rice
    Sailila E. Abdula
    Hye-Jung Lee
    Hojin Ryu
    Kwon Kyoo Kang
    Illsup Nou
    Mark E. Sorrells
    Yong-Gu Cho
    Plant Molecular Biology Reporter, 2016, 34 : 501 - 511
  • [47] Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONACO22 Improves Drought and Salt Tolerance in Rice
    Hong, Yongbo
    Zhang, Huijuan
    Huang, Lei
    Li, Dayong
    Song, Fengming
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [48] Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.)
    Zeng, Zhengming
    Xiong, Fangjie
    Yu, Xiaohong
    Gong, Xiaoping
    Luo, Juntao
    Jiang, Yudong
    Kuang, Haochi
    Gao, Bijun
    Niu, Xiangli
    Liu, Yongsheng
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 109 : 62 - 71
  • [49] Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco
    Ji-Yu Zhang
    Shen-Chun Qu
    Yu-Shan Qiao
    Zhen Zhang
    Zhong-Ren Guo
    Molecular Biology Reports, 2014, 41 : 1553 - 1561
  • [50] Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco
    Zhang, Ji-Yu
    Qu, Shen-Chun
    Qiao, Yu-Shan
    Zhang, Zhen
    Guo, Zhong-Ren
    MOLECULAR BIOLOGY REPORTS, 2014, 41 (03) : 1553 - 1561