CRISPR-based metabolic editing: Next-generation metabolic engineering in plants

被引:32
|
作者
Sabzehzari, Mohammad [1 ]
Zeinali, Masoumeh [2 ]
Naghavi, Mohammad Reza [1 ]
机构
[1] Univ Tehran, Coll Agr & Nat Resources, Dept Agron & Plant Breeding, Div Biotechnol, Tehran, Iran
[2] Univ Mohaghegh Ardabili, Fac Agr, Dept Agron & Plant Breeding, Div Biotechnol, Ardebil, Iran
基金
美国国家科学基金会;
关键词
CRISPR-Cas9; CRISPR-Cpf1; Genome editing; Medicinal plants; Secondary metabolites; TARGETED MUTAGENESIS; ARTEMISININ BIOSYNTHESIS; EXPRESSION; GENES; LOCALIZATION; ALKALOIDS; PATHWAYS; RICE;
D O I
10.1016/j.gene.2020.144993
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Plants generate many secondary metabolites, so called phyto-metabolites, which can be used as toxins, dyes, drugs, and insecticides in bio-warfare plus bio-terrorism, industry, medicine, and agriculture, respectively. To 2013, the first generation metabolic engineering approaches like miRNA-based manipulation were widely adopted by researchers in biosciences. However, the discovery of the clustered regularly interspaced short palindromic repeat (CRISPR) genome editing system revolutionized metabolic engineering due to its unique features so that scientists could manipulate the biosynthetic pathways of phyto-metabolites through approaches like miRNA-mediated CRISPR-Cas9. According to the increasing importance of the genome editing in plant sciences, we discussed the current findings on CRISPR-based manipulation of phyto-metabolites in plants, especially medicinal ones, and suggested the ideas to phyto-metabolic editing.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Transgenic mice for in vivo epigenome editing with CRISPR-based systems
    Gemberling, Matthew
    Siklenka, Keith
    Rodriguez, Erica
    Tonn-Eisinger, Katherine R.
    Barrera, Alejandro
    Liu, Fang
    Kantor, Ariel
    Li, Liqing
    Cigliola, Valentina
    Hazlett, Mariah F.
    Williams, Courtney
    Bartelt, Luke C.
    Madigan, Victoria J.
    Bodle, Josephine
    Daniels, Heather
    Rouse, Douglas C.
    Hilton, Isaac B.
    Asokan, Aravind
    Ciofani, Maria
    Poss, Kenneth D.
    Reddy, Timothy E.
    West, Anne E.
    Gersbach, Charles A.
    NATURE METHODS, 2021, 18 (08) : 965 - +
  • [42] CRISPR-Based Gene Editing Techniques in Pediatric Neurological Disorders
    Chrzanowski, Stephen
    Batra, Ranjan
    PEDIATRIC NEUROLOGY, 2024, 153 : 166 - 174
  • [43] Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing
    Clarissa, Elizabeth Maria
    Karmacharya, Mamata
    Choi, Hyunmin
    Kumar, Sumit
    Cho, Yoon-Kyoung
    SMALL, 2025,
  • [44] Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum
    Li, Rui
    Li, Ran
    Li, Xindi
    Fu, Daqi
    Zhu, Benzhong
    Tian, Huiqin
    Luo, Yunbo
    Zhu, Hongliang
    PLANT BIOTECHNOLOGY JOURNAL, 2018, 16 (02) : 415 - 427
  • [45] Engineering metabolic pathways in plants by multigene transformation
    Zorrilla-Lopez, Uxue
    Masip, Gemma
    Arjo, Gemma
    Bai, Chao
    Banakar, Raviraj
    Bassie, Ludovic
    Berman, Judit
    Farre, Gemma
    Miralpeix, Bruna
    Perez-Massot, Eduard
    Sabalza, Maite
    Sanahuja, Georgina
    Vamvaka, Evangelia
    Twyman, Richard M.
    Christou, Paul
    Zhu, Changfu
    Capell, Teresa
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2013, 57 (6-8) : 565 - 576
  • [46] Genome Editing Enables Next-Generation Hybrid Seed Production Technology
    Qi, Xiantao
    Zhang, Congsheng
    Zhu, Jinjie
    Liu, Changlin
    Huang, Changling
    Li, Xinhai
    Xie, Chuanxiao
    MOLECULAR PLANT, 2020, 13 (09) : 1262 - 1269
  • [47] CRISPR-based curing and analysis of metabolic burden of cryptic plasmids in Escherichia coli Nissle 1917
    Zainuddin, Halimatun S.
    Bai, Yanfen
    Mansell, Thomas J.
    ENGINEERING IN LIFE SCIENCES, 2019, 19 (06): : 478 - 485
  • [48] The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators
    Chakraborty, Chiranjib
    Teoh, Seong Lin
    Das, Srijit
    CURRENT DRUG TARGETS, 2017, 18 (14) : 1653 - 1663
  • [49] CRISPR-based genome editing of a diurnal rodent, Nile grass rat (Arvicanthis niloticus)
    Xie, Huirong
    Linning-Duffy, Katrina
    Demireva, Elena Y.
    Toh, Huishi
    Abolibdeh, Bana
    Shi, Jiaming
    Zhou, Bo
    Iwase, Shigeki
    Yan, Lily
    BMC BIOLOGY, 2024, 22 (01)
  • [50] Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering
    Mougiakos, Ioannis
    Orsi, Enrico
    Ghiffary, Mohammad Rifqi
    Post, Wilbert
    de Maria, Alberto
    Adiego-Perez, Belen
    Kengen, Serve W. M.
    Weusthuis, Ruud A.
    van der Oost, John
    MICROBIAL CELL FACTORIES, 2019, 18 (01)