A new improved Liu-type estimator for Poisson regression models

被引:11
作者
Akay, Kadri Ulas [1 ]
Ertan, Esra [1 ]
机构
[1] Istanbul Univ, Sci Fac, Dept Math, Istanbul, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2022年 / 51卷 / 05期
关键词
Poisson regression; mean squared error; multicollinearity; Ridge estimator; Liu estimator; MEAN-SQUARE ERROR; RIDGE-REGRESSION; 2-PARAMETER ESTIMATOR;
D O I
10.15672/hujms.1012056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Poisson Regression Model (PRM) is commonly used in applied sciences such as economics and the social sciences when analyzing the count data. The maximum likelihood method is the well-known estimation technique to estimate the parameters in PRM. However, when the explanatory variables are highly intercorrelated, unstable parameter estimates can be obtained. Therefore, biased estimators are widely used to alleviate the undesirable effects of these problems. In this study, a new improved Liu-type estimator is proposed as an alternative to the other proposed biased estimators. The superiority of the new proposed estimator over the existing biased estimators is given under the asymptotic matrix mean square error criterion. Furthermore, Monte Carlo simulation studies are executed to compare the performances of the proposed biased estimators. Finally, the obtained results are illustrated in real data. Based on the set of experimental conditions which are investigated, the proposed biased estimator outperforms the other biased estimators.
引用
收藏
页码:1484 / 1503
页数:20
相关论文
共 31 条
[1]   Proposed methods in estimating the ridge regression parameter in Poisson regression model [J].
Alanaz, Mazin M. ;
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (02) :506-515
[2]  
Algamal Z. Y., 2018, Al-Qadisiyah Journal for Administrative and Economic Sciences, V20, P37
[3]   Modifed almost unbiased two-parameter estimator for the Poisson regression model with an application to accident data [J].
Alheety, Mustafa I. ;
Qasim, Muhammad ;
Mansson, Kristofer ;
Kibria, B. M. Golam .
SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2021, 45 (02) :121-142
[4]   Jackknifed Liu-type Estimator in Poisson Regression Model [J].
Alkhateeb, Ahmed Naziyah ;
Algamal, Zakariya Yahya .
JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2020, 19 (01) :21-37
[5]   A new adjusted Liu estimator for the Poisson regression model [J].
Amin, Muhammad ;
Akram, Muhammad Nauman ;
Kibria, B. M. Golam .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (20)
[6]   On the James-Stein estimator for the poisson regression model [J].
Amin, Muhammad ;
Akram, Muhammad Nauman ;
Amanullah, Muhammad .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) :5596-5608
[7]   A New Two-Parameter Estimator for the Poisson Regression Model [J].
Asar, Yasin ;
Genc, Asir .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2) :793-803
[8]   Improved two-parameter estimators for the negative binomial and Poisson regression models [J].
Cetinkaya, Merve Kandemir ;
Kaciranlar, Selahattin .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (14) :2645-2660
[9]  
Dunn PK., 2018, GEN LINEAR MODELS EX, DOI DOI 10.1007/978-1-4419-0118-7
[10]  
FAREBROTHER RW, 1976, J ROY STAT SOC B MET, V38, P248