Activation of polymer electrolyte membrane fuel cells: Mechanisms, procedures, and evaluation

被引:25
作者
Pei, Pucheng [1 ]
Fu, Xi [1 ]
Zhu, Zijing [1 ]
Ren, Peng [1 ]
Chen, Dongfang [1 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuel cell; Activation mechanisms; Rapid procedures; Design principles; Durability evaluation; LONG-TERM PERFORMANCE; OXYGEN REDUCTION; CATHODE CATALYST; BREAK-IN; PLATINUM; TEMPERATURE; NAFION; LAYERS; DURABILITY; DESIGN;
D O I
10.1016/j.ijhydene.2022.05.228
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Newly fabricated proton exchange membrane fuel cells (PEMFCs) need an activation process to improve the initial performance. The long activation time leads to a high cost and a low production efficiency, thus it is significant to develop rapid and non-destructive activation methods. This review summaries possible activation mechanisms, compares and analyzes various activation methods, and afterwards, proposes the design principles for activation. Some criteria for evaluating activation completion are also provided as references. Finally, the influence of several activation methods on cell durability is overviewed from present available researches. In this review, hydrogen pumping, short circuit, and cathode starvation are considered as more effective methods versus traditional approaches. The performance improvement after activation is ascribed to the change in membrane morphology, the reduction of contamination, and the optimization of catalyst layers. More importantly, five factors including high temperature, sufficient water, change in current or voltage, reductive atmosphere, and valid combination of different methods are highlighted in designing rapid activation procedures. (C) 2022 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:24897 / 24915
页数:19
相关论文
共 50 条
  • [21] New approach for the evaluation of membranes transport properties for polymer electrolyte membrane fuel cells
    Brunetti, Adele
    Fontananova, Enrica
    Donnadio, Anna
    Casciola, Mario
    Di Vona, Maria Luisa
    Sgreccia, Emanuela
    Drioli, Enrico
    Barbieri, Giuseppe
    JOURNAL OF POWER SOURCES, 2012, 205 : 222 - 230
  • [22] Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis
    Mohsin, Munazza
    Raza, Rizwan
    Mohsin-ul-Mulk, M.
    Yousaf, Abida
    Hacker, Viktor
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (45) : 24093 - 24107
  • [23] Impact of Membrane Types and Catalyst Layers Composition on Performance of Polymer Electrolyte Membrane Fuel Cells
    Mohanta, Paritosh Kumar
    Ripa, Masuma Sultana
    Regnet, Fabian
    Joerissen, Ludwig
    CHEMISTRYOPEN, 2020, 9 (05): : 607 - 615
  • [24] Design and optimization of polymer electrolyte membrane (PEM) fuel cells
    Grujicic, M
    Chittajallu, KM
    APPLIED SURFACE SCIENCE, 2004, 227 (1-4) : 56 - 72
  • [25] Capillaries for water management in polymer electrolyte membrane fuel cells
    Cho, J. I. S.
    Neville, T. P.
    Trogadas, P.
    Bailey, J.
    Shearing, P.
    Brett, D. J. L.
    Coppens, M. -O.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (48) : 21949 - 21958
  • [26] Stack design and performance of polymer electrolyte membrane fuel cells
    Jiang, RZ
    Chu, DR
    JOURNAL OF POWER SOURCES, 2001, 93 (1-2) : 25 - 31
  • [27] MXenes in polymer electrolyte membrane hydrogen fuel and electrolyzer cells
    Boretti, Alberto
    Castelletto, Stefania
    CERAMICS INTERNATIONAL, 2022, 48 (23) : 34190 - 34198
  • [28] Effect of ammonia on the performance of polymer electrolyte membrane fuel cells
    Halseid, R
    Vie, PJS
    Tunold, R
    JOURNAL OF POWER SOURCES, 2006, 154 (02) : 343 - 350
  • [29] Cold start analysis of polymer electrolyte membrane fuel cells
    Jiao, Kui
    Li, Xianguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) : 5077 - 5094
  • [30] Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost
    Guerrero Moreno, Nayibe
    Cisneros Molina, Myriam
    Gervasio, Dominic
    Perez Robles, Juan Francisco
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 52 : 897 - 906