Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice

被引:433
|
作者
Fang, Yujie [1 ]
You, Jun [1 ]
Xie, Kabin [1 ]
Xie, Weibo [1 ]
Xiong, Lizhong [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
NAC; Stress; Oryza; Transcription factor; Tissue-specific expression;
D O I
10.1007/s00438-008-0386-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NAM, ATAF, and CUC (NAC) transcription factors comprise a large plant-specific gene family and a few members of this family have been characterized for their roles in plant growth, development, and stress tolerance. In this study, systematic sequence analysis revealed 140 putative NAC or NAC-like genes (ONAC) in rice. Phylogenetic analysis suggested that NAC family can be divided into five groups (I-V). Among them, all the published development-related genes fell into group I, and all the published stress-related NAC genes fell into the group III (namely stress-responsive NAC genes, SNAC). Distinct compositions of the putative motifs were revealed on the basis of NAC protein sequences in rice. Most members contained a complete NAC DNA-binding domain and a variable transcriptional regulation domain. Sequence analysis, together with the organization of putative motifs, indicated distinct structures and potential diverse functions of NAC family in rice. Yeast one-hybrid analysis confirmed that 12 NAC proteins representing different motif compositions can bind the NAC core DNA-binding site. Real-time polymerase chain reaction (PCR) analysis revealed 12 genes with different tissue-specific (such as callus, root, stamen, or immature endosperm) expression patterns, suggesting that these genes may play crucial regulatory roles during growth and development of rice. The expression levels of this family were also checked under various abiotic stresses including drought, salinity, and low temperature. A preliminary check based on our microarray data suggested that more than 40 genes of this family were responsive to drought and/or salt stresses. Among them, 20 genes were further investigated for their stress responsiveness in detail by real-time PCR analysis. Most of these stress-responsive genes belonged to the group III (SNAC). Considering the fact that a very limited number of genes of the NAC family have been characterized, our data provide a very useful reference for functional analysis of this family in rice.
引用
收藏
页码:547 / 563
页数:17
相关论文
共 50 条
  • [21] ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis
    Xi, Yan
    Ling, Qiqi
    Zhou, Yue
    Liu, Xiang
    Qian, Yexiong
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [22] Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco
    Wang, Yiping
    Cui, Ying
    Liu, Bin
    Wang, Ying
    Sun, Shaoying
    Wang, Jingwen
    Tan, Mengmeng
    Yan, Hao
    Zhang, Yanni
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [23] A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice
    Fang, Yujie
    Liao, Kaifeng
    Du, Hao
    Xu, Yan
    Song, Huazhi
    Li, Xianghua
    Xiong, Lizhong
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (21) : 6803 - 6817
  • [24] Genome-Wide Sequence and Expression Analysis of the NAC Transcription Factor Family in Polyploid Wheat
    Borrill, Philippa
    Harrington, Sophie A.
    Uauy, Cristobal
    G3-GENES GENOMES GENETICS, 2017, 7 (09): : 3019 - 3029
  • [25] OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes
    Kai Xu
    Shoujun Chen
    Tianfei Li
    Xiaosong Ma
    Xiaohua Liang
    Xuefeng Ding
    Hongyan Liu
    Lijun Luo
    BMC Plant Biology, 15
  • [26] OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes
    Xu, Kai
    Chen, Shoujun
    Li, Tianfei
    Ma, Xiaosong
    Liang, Xiaohua
    Ding, Xuefeng
    Liu, Hongyan
    Luo, Lijun
    BMC PLANT BIOLOGY, 2015, 15
  • [27] Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes
    Matsukura, Satoko
    Mizoi, Junya
    Yoshida, Takumi
    Todaka, Daisuke
    Ito, Yusuke
    Maruyama, Kyonoshin
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    MOLECULAR GENETICS AND GENOMICS, 2010, 283 (02) : 185 - 196
  • [28] Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes
    Satoko Matsukura
    Junya Mizoi
    Takumi Yoshida
    Daisuke Todaka
    Yusuke Ito
    Kyonoshin Maruyama
    Kazuo Shinozaki
    Kazuko Yamaguchi-Shinozaki
    Molecular Genetics and Genomics, 2010, 283 : 185 - 196
  • [29] A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis
    Lu, Min
    Ying, Sheng
    Zhang, Deng-Feng
    Shi, Yun-Su
    Song, Yan-Chun
    Wang, Tian-Yu
    Li, Yu
    PLANT CELL REPORTS, 2012, 31 (09) : 1701 - 1711
  • [30] A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis
    Min Lu
    Sheng Ying
    Deng-Feng Zhang
    Yun-Su Shi
    Yan-Chun Song
    Tian-Yu Wang
    Yu Li
    Plant Cell Reports, 2012, 31 : 1701 - 1711