Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice

被引:432
|
作者
Fang, Yujie [1 ]
You, Jun [1 ]
Xie, Kabin [1 ]
Xie, Weibo [1 ]
Xiong, Lizhong [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
NAC; Stress; Oryza; Transcription factor; Tissue-specific expression;
D O I
10.1007/s00438-008-0386-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NAM, ATAF, and CUC (NAC) transcription factors comprise a large plant-specific gene family and a few members of this family have been characterized for their roles in plant growth, development, and stress tolerance. In this study, systematic sequence analysis revealed 140 putative NAC or NAC-like genes (ONAC) in rice. Phylogenetic analysis suggested that NAC family can be divided into five groups (I-V). Among them, all the published development-related genes fell into group I, and all the published stress-related NAC genes fell into the group III (namely stress-responsive NAC genes, SNAC). Distinct compositions of the putative motifs were revealed on the basis of NAC protein sequences in rice. Most members contained a complete NAC DNA-binding domain and a variable transcriptional regulation domain. Sequence analysis, together with the organization of putative motifs, indicated distinct structures and potential diverse functions of NAC family in rice. Yeast one-hybrid analysis confirmed that 12 NAC proteins representing different motif compositions can bind the NAC core DNA-binding site. Real-time polymerase chain reaction (PCR) analysis revealed 12 genes with different tissue-specific (such as callus, root, stamen, or immature endosperm) expression patterns, suggesting that these genes may play crucial regulatory roles during growth and development of rice. The expression levels of this family were also checked under various abiotic stresses including drought, salinity, and low temperature. A preliminary check based on our microarray data suggested that more than 40 genes of this family were responsive to drought and/or salt stresses. Among them, 20 genes were further investigated for their stress responsiveness in detail by real-time PCR analysis. Most of these stress-responsive genes belonged to the group III (SNAC). Considering the fact that a very limited number of genes of the NAC family have been characterized, our data provide a very useful reference for functional analysis of this family in rice.
引用
收藏
页码:547 / 563
页数:17
相关论文
共 50 条
  • [1] Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice
    Yujie Fang
    Jun You
    Kabin Xie
    Weibo Xie
    Lizhong Xiong
    Molecular Genetics and Genomics, 2008, 280 : 547 - 563
  • [2] Systematic Analysis and Identification of Stress-Responsive Genes of the NAC Gene Family in Brachypodium distachyon
    You, Jun
    Zhang, Lihua
    Song, Bo
    Qi, Xiaoquan
    Chan, Zhulong
    PLOS ONE, 2015, 10 (03):
  • [3] Identification of novel stress-responsive transcription factor genes in rice by cDNA array analysis
    Wu, Cong-Qing
    Hu, Hong-Hong
    Zeng, Ya
    Liang, Da-Cheng
    Xie, Ka-Bin
    Zhang, Jian-Wei
    Chu, Zhao-Hui
    Xiong, Li-Zhong
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2006, 48 (10) : 1216 - 1224
  • [4] Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic Stress-Responsive Genes in Medicago sativa L.
    Xueyang Min
    Xiaoyu Jin
    Zhengshe Zhang
    Xingyi Wei
    Boniface Ndayambaza
    Yanrong Wang
    Wenxian Liu
    Journal of Plant Growth Regulation, 2020, 39 : 324 - 337
  • [5] Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic Stress-Responsive Genes in Medicago sativa L.
    Min, Xueyang
    Jin, Xiaoyu
    Zhang, Zhengshe
    Wei, Xingyi
    Ndayambaza, Boniface
    Wang, Yanrong
    Liu, Wenxian
    JOURNAL OF PLANT GROWTH REGULATION, 2020, 39 (01) : 324 - 337
  • [6] Comparative Genomic Analysis of GARP Transcription Factor Family in Legumes and Identification of Stress-Responsive Candidate Genes
    Ritu Singh
    Ashutosh Pandey
    Praveen Kumar Verma
    Journal of Plant Growth Regulation, 2023, 42 : 6005 - 6020
  • [7] Comparative Genomic Analysis of GARP Transcription Factor Family in Legumes and Identification of Stress-Responsive Candidate Genes
    Singh, Ritu
    Pandey, Ashutosh
    Verma, Praveen Kumar
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (10) : 6005 - 6020
  • [8] WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species
    Clizia Villano
    Salvatore Esposito
    Vincenzo D’Amelia
    Raffaele Garramone
    Daniela Alioto
    Astolfo Zoina
    Riccardo Aversano
    Domenico Carputo
    Scientific Reports, 10
  • [9] Molecular Characterization of Six Tissue-Specific or Stress-Inducible Genes of NAC Transcription Factor Family in Tomato (Solanum lycopersicum)
    Mingku Zhu
    Zongli Hu
    Shuang Zhou
    Lingling Wang
    Tingting Dong
    Yu Pan
    Guoping Chen
    Journal of Plant Growth Regulation, 2014, 33 : 730 - 744
  • [10] Molecular Characterization of Six Tissue-Specific or Stress-Inducible Genes of NAC Transcription Factor Family in Tomato (Solanum lycopersicum)
    Zhu, Mingku
    Hu, Zongli
    Zhou, Shuang
    Wang, Lingling
    Dong, Tingting
    Pan, Yu
    Chen, Guoping
    JOURNAL OF PLANT GROWTH REGULATION, 2014, 33 (04) : 730 - 744