Linking carbon and water relations to drought-induced mortality in Pinus flexilis seedlings

被引:37
作者
Reinhardt, Keith [1 ]
Germino, Matthew J. [2 ]
Kueppers, Lara M. [3 ]
Domec, Jean-Christophe [4 ,5 ]
Mitton, Jeffry [6 ]
机构
[1] Idaho State Univ, Dept Biol Sci, Pocatello, ID 83209 USA
[2] US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Boise, ID 83706 USA
[3] Univ Calif, Sierra Nevada Res Inst, Merced, CA 95343 USA
[4] Bordeaux Sci Agro, INRA, ISPA UMR 1391, F-33175 Gradignan, France
[5] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA
[6] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
carbon balance; hydraulic resistance; non-structural carbohydrates; productivity; respiration; VAPOR-PRESSURE DEFICIT; CONIFER SEEDLINGS; MESOPHYLL CONDUCTANCE; STOMATAL CONDUCTANCE; DEVELOPMENTAL-STAGES; ELEVATION GRADIENT; GAS-EXCHANGE; TREE; PHOTOSYNTHESIS; FOREST;
D O I
10.1093/treephys/tpv045
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Survival of tree seedlings at high elevations has been shown to be limited by thermal constraints on carbon balance, but it is unknown if carbon relations also limit seedling survival at lower elevations, where water relations may be more important. We measured and modeled carbon fluxes and water relations in first-year Pinus flexilis seedlings in garden plots just beyond the warm edge of their natural range, and compared these with dry-mass gain and survival across two summers. We hypothesized that mortality in these seedlings would be associated with declines in water relations, more so than with carbon-balance limitations. Rather than gradual declines in survivorship across growing seasons, we observed sharp, large-scale mortality episodes that occurred once volumetric soil-moisture content dropped below 10%. By this point, seedling water potentials had decreased below -5 MPa, seedling hydraulic conductivity had decreased by 90% and seedling hydraulic resistance had increased by >900%. Additionally, non-structural carbohydrates accumulated in aboveground tissues at the end of both summers, suggesting impairments in phloem-transport from needles to roots. This resulted in low carbohydrate concentrations in roots, which likely impaired root growth and water uptake at the time of critically low soil moisture. While photosynthesis and respiration on a leaf area basis remained high until critical hydraulic thresholds were exceeded, modeled seedling gross primary productivity declined steadily throughout the summers. At the time of mortality, modeled productivity was insufficient to support seedling biomassgain rates, metabolism and secondary costs. Thus the large-scale mortality events that we observed near the end of each summer were most directly linked with acute, episodic declines in plant hydraulic function that were linked with important changes in whole-seedling carbon relations.
引用
收藏
页码:771 / 782
页数:12
相关论文
共 50 条
  • [11] Mutually inclusive mechanisms of drought-induced tree mortality
    Hajek, Peter
    Link, Roman M.
    Nock, Charles A.
    Bauhus, Juergen
    Gebauer, Tobias
    Gessler, Arthur
    Kovach, Kyle
    Messier, Christian
    Paquette, Alain
    Saurer, Matthias
    Scherer-Lorenzen, Michael
    Rose, Laura
    Schuldt, Bernhard
    GLOBAL CHANGE BIOLOGY, 2022, 28 (10) : 3365 - 3378
  • [12] Unlocking Drought-Induced Tree Mortality: Physiological Mechanisms to Modeling
    Li, Ximeng
    Xi, Benye
    Wu, Xiuchen
    Choat, Brendan
    Feng, Jinchao
    Jiang, Mingkai
    Tissue, David
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [13] Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species
    Anderegg, William R. L.
    Anderegg, Leander D. L.
    TREE PHYSIOLOGY, 2013, 33 (03) : 252 - 260
  • [14] Tree-ring density and carbon isotope composition are early-warning signals of drought-induced mortality in the drought tolerant Canary Island pine
    Lopez, Rosana
    Javier Cano, Francisco
    Rodriguez-Calcerrada, Jesus
    Sanguesa-Barreda, Gabriel
    Gazol, Antonio
    Julio Camarero, J.
    Rozenberg, Philippe
    Gil, Luis
    AGRICULTURAL AND FOREST METEOROLOGY, 2021, 310
  • [15] Nocturnal warming accelerates drought-induced seedling mortality of two evergreen tree species
    Lu, Ruiling
    Du, Ying
    Sun, Huanfa
    Xu, Xiaoni
    Yan, Liming
    Xia, Jianyang
    TREE PHYSIOLOGY, 2022, 42 (06) : 1164 - 1176
  • [16] TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation
    Liu, Qiuyu
    Peng, Changhui
    Schneider, Robert
    Cyr, Dominic
    Liu, Zelin
    Zhou, Xiaolu
    Kneeshaw, Daniel
    ECOLOGICAL MODELLING, 2021, 455
  • [17] The role of nutritional impairment in carbon-water balance of silver fir drought-induced dieback
    Gonzalez de Andres, Ester
    Gazol, Antonio
    Ignacio Querejeta, Jose
    Igual, Jose M.
    Colangelo, Michele
    Sanchez-Salguero, Raul
    Carlos Linares, Juan
    Julio Camarero, J.
    GLOBAL CHANGE BIOLOGY, 2022, 28 (14) : 4439 - 4458
  • [18] Coordination of physiological traits involved in drought-induced mortality of woody plants
    Mencuccini, Maurizio
    Minunno, Francesco
    Salmon, Yann
    Martinez-Vilalta, Jordi
    Hoelttae, Teemu
    NEW PHYTOLOGIST, 2015, 208 (02) : 396 - 409
  • [19] Drought-Induced Alterations in Carbon and Water Dynamics of Chinese Fir Plantations at the Trunk Wood Stage
    Liu, Yijun
    Zhang, Li
    Yan, Wende
    Peng, Yuanying
    Sun, Hua
    Chen, Xiaoyong
    PLANTS-BASEL, 2024, 13 (20):
  • [20] Friend or foe? The role of biotic agents in drought-induced plant mortality
    Griffin-Nolan, Robert J.
    Mohanbabu, Neha
    Araldi-Brondolo, Sarah
    Ebert, Alexander R.
    LeVonne, Julie
    Lumbsden-Pinto, Joanna I.
    Roden, Hannah
    Stark, Jordan R.
    Tourville, Jordon
    Becklin, Katie M.
    Drake, John E.
    Frank, Douglas A.
    Lamit, Louis J.
    Fridley, Jason D.
    PLANT ECOLOGY, 2021, 222 (05) : 537 - 548