A Maple package for computing Grobner bases for linear recurrence relations

被引:14
|
作者
Gerdt, VP
Robertz, D
机构
[1] Rhein Westfal TH Aachen, Lehhstuhl B Math, D-52062 Aachen, Germany
[2] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Russia
基金
俄罗斯基础研究基金会;
关键词
difference algebra; Grobner bases; Janet-like bases; recurrence relations; difference scheme; Feynman integral; Maple;
D O I
10.1016/j.nima.2005.11.171
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A Maple package for computing Grobner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two possible applications are illustrated by simple examples of the Laplace equation and a one-loop scalar integral of propagator type. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 219
页数:5
相关论文
共 50 条
  • [21] Opal: A system for computing noncommutative Grobner bases
    Green, EL
    Heath, LS
    Keller, BJ
    REWRITING TECHNIQUES AND APPLICATIONS, 1997, 1232 : 331 - 334
  • [22] Towards a certified and efficient computing of Grobner bases
    Jorge, JS
    Gulías, VM
    Freire, JL
    Sánchez, JJ
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2005, 2005, 3643 : 111 - 120
  • [23] COMPUTING GROBNER BASES AND INVARIANTS OF THE SYMMETRIC ALGEBRA
    La Barbiera, M.
    Restuccia, G.
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 777 - 789
  • [24] Computing generic bivariate Grobner bases with MATHEMAGIX
    Larrieu, Robin
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2019, 53 (02): : 41 - 44
  • [25] On computing Grobner bases in rings of differential operators
    Ma XiaoDong
    Sun Yao
    Wang DingKang
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (06) : 1077 - 1087
  • [26] An efficient method for computing comprehensive Grobner bases
    Kapur, Deepak
    Sun, Yao
    Wang, Dingkang
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 52 : 124 - 142
  • [27] GBLA - Grobner Basis Linear Algebra Package
    Boyer, Brice
    Eder, Christian
    Faugere, Jean-Charles
    Lachartre, Sylvian
    Martani, Fayssal
    PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 135 - 142
  • [28] An Algorithm for Computing Minimal Bidirectional Linear Recurrence Relations
    Salagean, Ana
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (10) : 4695 - 4700
  • [29] An Algorithm for Computing Minimal Bidirectional Linear Recurrence Relations
    Salagean, Ana
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1746 - 1750
  • [30] Linear Algebra to Compute Syzygies and Grobner Bases
    Cabarcas, Daniel
    Ding, Jintai
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 67 - 74