A Maple package for computing Grobner bases for linear recurrence relations

被引:14
|
作者
Gerdt, VP
Robertz, D
机构
[1] Rhein Westfal TH Aachen, Lehhstuhl B Math, D-52062 Aachen, Germany
[2] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Russia
基金
俄罗斯基础研究基金会;
关键词
difference algebra; Grobner bases; Janet-like bases; recurrence relations; difference scheme; Feynman integral; Maple;
D O I
10.1016/j.nima.2005.11.171
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A Maple package for computing Grobner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two possible applications are illustrated by simple examples of the Laplace equation and a one-loop scalar integral of propagator type. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 219
页数:5
相关论文
共 50 条
  • [1] Computing Grobner Bases within Linear Algebra
    Suzuki, Akira
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, PROCEEDINGS, 2009, 5743 : 310 - 321
  • [2] DetGB: A Software Package for Computing Grobner Bases of Determinantal Ideals
    Mou, Chenqi
    Song, Qiuye
    Zhou, Yutong
    MATHEMATICAL SOFTWARE-ICMS 2024, 2024, 14749 : 354 - 364
  • [3] GROBNER BASES IN TRUSS PROBLEMS WITH MAPLE
    IOAKIMIDIS, NI
    ANASTASSELOU, EG
    COMPUTERS & STRUCTURES, 1994, 52 (05) : 1093 - 1096
  • [4] Linear Algebra for Computing Grobner Bases of Linear Recursive Multidimensional Sequences
    Berthomieu, Jeremy
    Boyer, Brice
    Faugere, Jean-Charles
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 61 - 68
  • [5] Linear algebra for computing Grobner bases of linear recursive multidimensional sequences
    Berthomieu, Jeremy
    Boyer, Brice
    Faugere, Jean-Charles
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 83 : 36 - 67
  • [6] Computing Grobner and Involutive Bases for Linear Systems of Difference Equations
    Yanovich, Denis
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2017 (MMCP 2017), 2018, 173
  • [7] Computing inhomogeneous Grobner bases
    Bigatti, A. M.
    Caboara, M.
    Robbiano, L.
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (05) : 498 - 510
  • [8] A NEW FRAMEWORK FOR COMPUTING GROBNER BASES
    Gao, Shuhong
    Volny, Frank
    Wang, Mingsheng
    MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 449 - 465
  • [9] COMPUTING GROBNER BASES ASSOCIATED WITH LATTICES
    Alvarez-Barrientos, Ismara
    Borges-Quintana, Mijail
    Angel Borges-Trenard, Miguel
    Panario, Daniel
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 851 - 860
  • [10] FGb: A Library for Computing Grobner Bases
    Faugere, Jean-Charles
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 84 - 87