Defect Engineering in Manganese-Based Oxides for Aqueous Rechargeable Zinc-Ion Batteries: A Review

被引:371
|
作者
Xiong, Ting [1 ,2 ,3 ]
Zhang, Yaoxin [1 ]
Lee, Wee Siang Vincent [1 ]
Xue, Junmin [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117573, Singapore
[2] Natl Univ Singapore, Ctr Adv 2D Mat, Singapore 117546, Singapore
[3] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore
关键词
defect engineering; manganese-based oxides; zinc ion batteries; HIGH-CAPACITY; PROMISING CATHODE; STORAGE; ALPHA-MNO2; CHALLENGES; MNO2; NANOPARTICLES; BIRNESSITE; CHEMISTRY; MECHANISM;
D O I
10.1002/aenm.202001769
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of advanced cathode materials for aqueous the zinc ion battery (ZIB) represents a crucial step toward building future large-scale green energy conversion and storage systems. Recently, significant progress has been achieved in the development of manganese-based oxides for ZIB via defect engineering, whereby the intrinsic capacity and energy density have been enhanced. In this review, an overview of the recent progress in the defect engineering of manganese-based oxides for aqueous ZIBs is summarized in the following order: 1) the structures and properties of the commonly used manganese-based oxides, 2) the classification of the various types of defect engineering commonly reported, 3) the various strategies used to create defects in materials, and 4) the effects of the various types of defect engineering on the electrochemical performance of manganese-based oxides. Finally, a perspective on the defect engineering of manganese-based oxides is proposed to further enhance their electrochemical performance as a ZIB cathode.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs)
    Al-Amin, Md
    Islam, Saiful
    Shibly, Sayed Ul Alam
    Iffat, Samia
    NANOMATERIALS, 2022, 12 (22)
  • [32] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Chen, Min
    Zhang, Shu-Chao
    Zou, Zheng-Guang
    Zhong, Sheng-Lin
    Ling, Wen-Qin
    Geng, Jing
    Liang, Fang-An
    Peng, Xiao-Xiao
    Gao, Yang
    Yu, Fa-Gang
    RARE METALS, 2023, 42 (09) : 2868 - 2905
  • [33] Coordinately Unsaturated Manganese-Based Metal-Organic Frameworks as a High-Performance Cathode for Aqueous Zinc-Ion Batteries
    Yin, Chengjie
    Pan, Chengling
    Liao, Xiaobo
    Pan, Yusong
    Yuan, Liang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (30) : 35837 - 35847
  • [34] Boosting proton storage in layered vanadium oxides for aqueous zinc-ion batteries
    Wu, Tzu-Ho
    Lin, Wei-Sheng
    ELECTROCHIMICA ACTA, 2021, 394
  • [35] Manganese hexacyanoferrate anchoring MnO2 with enhanced stability for aqueous zinc-ion batteries
    Chen, Junchen
    Liao, Li
    Sun, Bin
    Song, Xin
    Wang, Mingshan
    Guo, Bingshu
    Ma, Zhiyuan
    Yu, Bo
    Li, Xing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 903
  • [36] Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries
    Li, Canpeng
    Xie, Xuesong
    Liang, Shuquan
    Zhou, Jiang
    ENERGY & ENVIRONMENTAL MATERIALS, 2020, 3 (02) : 146 - 159
  • [37] Better engineering layered vanadium oxides for aqueous zinc-ion batteries: Going beyond widening the interlayer spacing
    Guo, Yue
    Jiang, Hanmei
    Liu, Binbin
    Wang, Xingyang
    Zhang, Yifu
    Sun, Jianguo
    Wang, John
    SMARTMAT, 2024, 5 (01):
  • [38] Advances on Defect Engineering of Vanadium-Based Compounds for High-Energy Aqueous Zinc-Ion Batteries
    Guo, Cong
    Yi, Shanjun
    Si, Rui
    Xi, Baojuan
    An, Xuguang
    Liu, Jie
    Li, Jingfa
    Xiong, Shenglin
    ADVANCED ENERGY MATERIALS, 2022, 12 (40)
  • [39] Recent Advances in Vanadium-Based Aqueous Rechargeable Zinc-Ion Batteries
    Liu, Shude
    Kang, Ling
    Kim, Jong Min
    Chun, Young Tea
    Zhang, Jian
    Jun, Seong Chan
    ADVANCED ENERGY MATERIALS, 2020, 10 (25)
  • [40] Reaction kinetics in rechargeable zinc-ion batteries
    Tan, Yan
    An, Fuqiang
    Liu, Yongchang
    Li, Shengwei
    He, Pingge
    Zhang, Ning
    Li, Ping
    Qu, Xuanhui
    JOURNAL OF POWER SOURCES, 2021, 492