Supnorm of an eigenfunction of finitely many Hecke operators

被引:0
|
作者
Jana, Subhajit [1 ]
机构
[1] Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Automorphic form; Hecke operator; Amplifier;
D O I
10.1007/s11139-018-0047-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be a Laplace eigenfunction on a compact hyperbolic surface attached to an order in a quaternion algebra. Assuming that phi is an eigenfunction of Hecke operators at a fixed finite collection of primes, we prove an L-norm bound for phi that improves upon the trivial estimate by a power of the logarithm of the eigenvalue. We have constructed an amplifier whose length depends on the support of the amplifier on Hecke trees. We have used a method of Berard (Math Z 155: 249-276, 1977) to improve the Archimedean amplification.
引用
收藏
页码:623 / 638
页数:16
相关论文
共 13 条