The Impact of Snow Accumulation on the Active Layer Thermal Regime in High Arctic Soils

被引:28
作者
Lafreniere, Melissa J. [1 ]
Laurin, Emil [1 ,2 ]
Lamoureux, Scott F. [1 ]
机构
[1] Queens Univ, Dep Geog, Kingston, ON K7L 3N6, Canada
[2] Environm Canada, Pacific Forestry Ctr, Victoria, BC V8Z 1M5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NORTHWEST-TERRITORIES; ORGANIC-CARBON; TUNDRA; COVER; PERMAFROST; WATER; TEMPERATURES; THICKNESS; TRANSPORT; CLIMATE;
D O I
10.2136/vzj2012.0058
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study quantifies the impacts of snow augmentation and the timing of snow accumulation on the soil thermal regime at the Cape Bounty Arctic Watershed Observatory (CBAWO), in the Canadian High Arctic. Monthly soil temperatures between December and March 2006-2007 were 7.7 to 9.9 degrees C warmer beneath a deep drift (54 cm) relative to soils beneath ambient (unamended or background) snow conditions (10 cm). Although air temperatures and total snow accumulation at the sites in 2007-2008 were very similar to the previous winter, the mean monthly soil temperatures beneath two snow drifts (50 and 88 cm) were only 0.2 to 5.7 degrees C warmer for January through March than soils subject to ambient snow depths (18 and 35 cm). Results demonstrate that the timing of snow accumulation was more important than snow depth in determining winter soil temperatures. In 2006-2007, snow cover insulated soils by early November, while in 2007-2008 there was insufficient snow cover to insulate soils until late January 2008. In 2006-2007, winter (December March) soil temperatures beneath the deepest snow (54 cm) exceeded winter air temperatures by 6 degrees C, and mean annual air temperatures by 1 degrees C, while in 2007-2008 winter soil temperatures beneath 88 cm of snow were only 0.3 degrees C warmer than air, and mean annual temperatures were 2.4 degrees C cooler than air. There was a weak but significant inverse correlation between the maximum active layer thickness and the snow depth; however, this correlation was more pronounced for snow depths below approximately 30 cm. This study demonstrates that an understanding of the timing of projected increases in winter precipitation is necessary to predict changes in the active layer's thermal, hydrological, and biogeochemical response to regional climate change.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Thresholds in songbird occurrence in relation to landscape structure [J].
Betts, Matthew G. ;
Forbes, Graham J. ;
Diamond, Antony W. .
CONSERVATION BIOLOGY, 2007, 21 (04) :1046-1058
[2]   Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: Potential impacts on headwater stream ecosystems [J].
Bowden, W. B. ;
Gooseff, M. N. ;
Balser, A. ;
Green, A. ;
Peterson, B. J. ;
Bradford, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2008, 113 (G2)
[3]   The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments [J].
Brooks, PD ;
McKnight, DM ;
Bencala, KE .
WATER RESOURCES RESEARCH, 1999, 35 (06) :1895-1902
[4]  
Brooks PD, 1999, HYDROL PROCESS, V13, P2177, DOI 10.1002/(SICI)1099-1085(199910)13:14/15<2177::AID-HYP850>3.0.CO
[5]  
2-V
[6]  
Burn CR, 1998, PERMAFROST PERIGLAC, V9, P411, DOI 10.1002/(SICI)1099-1530(199810/12)9:4<411::AID-PPP292>3.0.CO
[7]  
2-6
[8]   LOWESS - A PROGRAM FOR SMOOTHING SCATTERPLOTS BY ROBUST LOCALLY WEIGHTED REGRESSION [J].
CLEVELAND, WS .
AMERICAN STATISTICIAN, 1981, 35 (01) :54-54
[10]  
Environment Canada, 2009, MET REC MOULD BAY A