Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer

被引:611
作者
Padmanabhan, B
Tong, KI
Ohta, T
Nakamura, Y
Scharlock, M
Ohtsuji, M
Kang, MI
Kobayashi, A
Yokoyama, S
Yamamoto, M
机构
[1] RIKEN, Genom Sci Ctr, Yokohama, Kanagawa 2300045, Japan
[2] Univ Tsukuba, Grad Sch Comprehens Human Sci, Ctr Tsukuba Adv Res Alliance, Tsukuba, Ibaraki 3058577, Japan
[3] Univ Tsukuba, Grad Sch Comprehens Human Sci, JST ERATO Environm Response Project, Tsukuba, Ibaraki 3058577, Japan
[4] Natl Canc Ctr, Res Inst, Genom Div, Tokyo 1040045, Japan
[5] RIKEN, Harima Inst SPring8, Cellular Signaling Lab, Sayo, Hyogo 6795148, Japan
[6] RIKEN, Harima Inst SPring8, Structurome Res Grp, Sayo, Hyogo 6795148, Japan
[7] Univ Tokyo, Grad Sch Sci, Dept Biochem & Biophys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1016/j.molcel.2006.01.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nrf2 regulates the cellular oxidative stress response, whereas Keapl represses Nrf2 through its molecular interaction. To elucidate the molecular mechanism of the Keapl and Nrf2 interaction, we resolved the six-bladed beta propeller crystal structure of the Kelch/DGR and CTR domains of mouse Keap1 and revealed that extensive inter- and intrablacle hydrogen bonds maintain the structural integrity and proper association of Keapl with Nrf2. A peptide containing the ETGE motif of Nrf2 binds the beta propeller of Keap1 at the entrance of the central cavity on the bottom side via electrostatic interactions with conserved arginine residues. We found a somatic mutation and a gene variation in human lung cancer cells that change glycine to cysteine in the DGR domain, introducing local conformational changes that reduce Keap1's affinity for Nrf2. These results provide a structural basis for the loss of Keapl function and gain of Nrf2 function.
引用
收藏
页码:689 / 700
页数:12
相关论文
共 36 条
  • [21] Nrf2-Keap1 defines a physiologically important stress response mechanism
    Motohashi, H
    Yamamoto, M
    [J]. TRENDS IN MOLECULAR MEDICINE, 2004, 10 (11) : 549 - 557
  • [22] G protein heterodimers: New structures propel new questions
    Neer, EJ
    Smith, TF
    [J]. CELL, 1996, 84 (02) : 175 - 178
  • [23] Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase
    Orlicky, S
    Tang, XJ
    Willems, A
    Tyers, M
    Sicheri, F
    [J]. CELL, 2003, 112 (02) : 243 - 256
  • [24] Processing of X-ray diffraction data collected in oscillation mode
    Otwinowski, Z
    Minor, W
    [J]. MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 : 307 - 326
  • [25] Purification, crystallization and preliminary X-ray diffraction analysis of the Kelch-like motif region of mouse Keap1
    Padmanabhan, B
    Scharlock, M
    Tong, KI
    Nakamura, Y
    Kang, MI
    Kobayashi, A
    Matsumoto, T
    Tanaka, A
    Yamamoto, M
    Yokoyama, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2005, 61 : 153 - 155
  • [26] Incorporation of prior phase information strengthens maximum-likelihood structure refinement
    Pannu, NS
    Murshudov, GN
    Dodson, EJ
    Read, RJ
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 1285 - 1294
  • [27] Cancer genetics
    Ponder, BAJ
    [J]. NATURE, 2001, 411 (6835) : 336 - 341
  • [28] Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice
    Ramos-Gomez, M
    Kwak, MK
    Dolan, PM
    Itoh, K
    Yamamoto, M
    Talalay, P
    Kensler, TW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) : 3410 - 3415
  • [29] Sequence and structural analysis of BTB domain proteins -: art. no. R82
    Stogios, PJ
    Downs, GS
    Jauhal, JJS
    Nandra, SK
    Privé, GG
    [J]. GENOME BIOLOGY, 2005, 6 (10)
  • [30] Automated MAD and MIR structure solution
    Terwilliger, TC
    Berendzen, J
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1999, 55 : 849 - 861