Comparison of gene regulatory networks using adaptive neural network and self-organising map approaches over Huh7 hepatoma cell microarray data matrix

被引:2
作者
Barman, Bandana [1 ]
Biswas, Paramita [2 ]
Mukhopadhyay, Anirban [2 ]
机构
[1] Govt Engn Coll, Dept Elect & Commun Engn, Kalyani, WB, India
[2] Univ Kalyani, Dept Comp Sci & Technol, Kalyani, WB, India
关键词
gene regulatory network; GRN; microarray time series gene expression data; adaptive neural network; ANN; self-organisation map; SOM; fuzzy C-means clustering; Euclidean distance;
D O I
10.1504/IJBIC.2016.10000265
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Construction of gene regulatory network (GRN) is very important as it governs the expression levels of biomolecules in microarray data. In this article, we have developed GRNs by adaptive neural network (ANN) and self-organising map (SOM) approaches over Hepatitis C virus infection effect on Huh7 hepatoma cell microarray time series data. We then compared GRNs for the best performance analysis. We used fuzzy C-means clustering method to cluster the normalised dataset and then cluster centres are identified. After constructing GRNs within cluster centres, we analysed that SOM topology results a better performance providing minimum error to construct the GRN from sample data.
引用
收藏
页码:240 / 247
页数:8
相关论文
共 7 条
[1]   Comparing Statistical Methods for Constructing Large Scale Gene Networks [J].
Allen, Jeffrey D. ;
Xie, Yang ;
Chen, Min ;
Girard, Luc ;
Xiao, Guanghua .
PLOS ONE, 2012, 7 (01)
[2]  
[Anonymous], 2013, INT J BIOINFORMATICS
[3]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms, DOI 10.1007/978-1-4757-0450-1_3
[4]  
BORGELT C, 2003, NEUROFUZZY SYSTEME
[5]   Gene regulatory networks [J].
Davidson, E ;
Levine, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (14) :4935-4935
[6]  
McGarry K, 2007, LECT NOTES COMPUT SC, V4774, P206
[7]   A general modeling strategy for gene regulatory networks with stochastic dynamics [J].
Ribeiro, Andre ;
Zhu, Rui ;
Kauffman, Stuart A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (09) :1630-1639