Protein Function Prediction by Clustering of Protein-Protein Interaction Network

被引:0
作者
Cingovska, Ivana [1 ]
Bogojeska, Aleksandra [1 ]
Trivodaliev, Kire [1 ]
Kalajdziski, Slobodan [1 ]
机构
[1] Ss Cyril & Methodius Univ, Fac Comp Sci & Engn, Skopje 1000, North Macedonia
来源
ICT INNOVATIONS 2011 | 2011年 / 150卷
关键词
Protein interaction networks; Graph clustering; Protein function prediction; MOLECULAR-COMPLEXES; YEAST; DATABASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recent advent of high throughput methods has generated large amounts of protein-protein interaction network (PPIN) data. When studying the workings of a biological cell, it is useful to be able to detect known and predict still undiscovered protein complexes within the cell's PPINs. Such predictions may be used as an inexpensive tool to direct biological experiments. Because of its importance in the studies of protein interaction network, there are different models and algorithms in identifying functional modules in PPINs. In this paper, we present two representative methods, focusing on the comparison of their clustering properties in PPIN and their contribution towards function prediction. The work is done with PPIN data from the bakers' yeast (Saccaromyces cerevisiae) and since the network is noisy and still incomplete, we use pre-processing and purifying. As a conclusion new progress and future research directions are discussed.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 23 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[3]   BIND - a data specification for storing and describing biomolecular interactions, molecular complexes and pathways [J].
Bader, GD ;
Hogue, CWV .
BIOINFORMATICS, 2000, 16 (05) :465-477
[4]   The GRID: The General Repository for Interaction Datasets [J].
Breitkreutz, BJ ;
Stark, C ;
Tyers, M .
GENOME BIOLOGY, 2003, 4 (03)
[5]  
Brun C, 2004, GENOME BIOL, V5
[6]   MINT: the molecular INTeraction database [J].
Chatr-aryamontri, Andrew ;
Ceol, Arnaud ;
Palazzi, Luisa Montecchi ;
Nardelli, Giuliano ;
Schneider, Maria Victoria ;
Castagnoli, Luisa ;
Cesareni, Gianni .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D572-D574
[7]   Detecting functional modules in the yeast protein-protein interaction network [J].
Chen, Jingchun ;
Yuan, Bo .
BIOINFORMATICS, 2006, 22 (18) :2283-2290
[8]   The use of edge-betweenness clustering to investigate biological function in protein interaction networks [J].
Dunn, R ;
Dudbridge, F ;
Sanderson, CM .
BMC BIOINFORMATICS, 2005, 6 (1)
[9]   Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO) [J].
Dwight, SS ;
Harris, MA ;
Dolinski, K ;
Ball, CA ;
Binkley, G ;
Christie, KR ;
Fisk, DG ;
Issel-Tarver, L ;
Schroeder, M ;
Sherlock, G ;
Sethuraman, A ;
Weng, S ;
Botstein, D ;
Cherry, JM .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :69-72
[10]   Community detection in graphs [J].
Fortunato, Santo .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2010, 486 (3-5) :75-174