UNIQUENESS THEOREMS ON FUNCTIONAL INEQUALITIES CONCERNING CUBIC-QUADRATIC-ADDITIVE EQUATION

被引:0
|
作者
Lee, Yang-Hi [1 ]
Jung, Soon-Mo [2 ]
Rassias, Michael Th. [3 ]
机构
[1] Gongju Natl Univ Educ, Dept Math Educ, Gongju 32553, South Korea
[2] Hongik Univ, Coll Sci & Technol, Math Sect, Sejong 30016, South Korea
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2018年 / 12卷 / 01期
基金
新加坡国家研究基金会;
关键词
Functional inequality; functional equation; generalized Hyers-Ulam stability; n-dimensional cubic-quadratic-additive functional equation; direct method; BANACH-SPACES; STABILITY; RASSIAS;
D O I
10.7153/jmi-2018-12-04
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove uniqueness theorems concerning the functional inequalities in connection with an n-dimensional cubic-quadratic-additive equation Sigma(m)(i=1) c(i)f (a(i1)x(1) + a(i2)x(2) + . . . + a(in-xn)) = 0 by applying the direct method.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条