Oxfold: kinetic folding of RNA using stochastic context-free grammars and evolutionary information

被引:13
作者
Anderson, James W. J. [1 ]
Haas, Pierre A. [2 ]
Mathieson, Leigh-Anne [3 ]
Volynkin, Vladimir [4 ]
Lyngso, Rune [1 ]
Tataru, Paula [5 ]
Hein, Jotun [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[3] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[4] European Bioinformat Inst, Hinxton CB10 1SD, Cambs, England
[5] Aarhus Univ, Bioinformat Res Ctr, DK-8000 Aarhus C, Denmark
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
SECONDARY STRUCTURE PREDICTION; WEB SERVER; MODELS;
D O I
10.1093/bioinformatics/btt050
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Many computational methods for RNA secondary structure prediction, and, in particular, for the prediction of a consensus structure of an alignment of RNA sequences, have been developed. Most methods, however, ignore biophysical factors, such as the kinetics of RNA folding; no current implementation considers both evolutionary information and folding kinetics, thus losing information that, when considered, might lead to better predictions. Results: We present an iterative algorithm, Oxfold, in the framework of stochastic context-free grammars, that emulates the kinetics of RNA folding in a simplified way, in combination with a molecular evolution model. This method improves considerably on existing grammatical models that do not consider folding kinetics. Additionally, the model compares favourably to non-kinetic thermodynamic models. Availability: http://www.stats.ox.ac.uk/similar to anderson. Contact: anderson@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:704 / 710
页数:7
相关论文
共 29 条
  • [1] Evolving stochastic context-free grammars for RNA secondary structure prediction
    Anderson, James W. J.
    Tataru, Paula
    Staines, Joe
    Hein, Jotun
    Lyngso, Rune
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [2] RNA STRAND: The RNA secondary structure and statistical analysis database
    Andronescu, Mirela
    Bereg, Vera
    Hoos, Holger H.
    Condon, Anne
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [3] RNAalifold: improved consensus structure prediction for RNA alignments
    Bernhart, Stephan H.
    Hofacker, Ivo L.
    Will, Sebastian
    Gruber, Andreas R.
    Stadler, Peter F.
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [4] Brown M., 1995, Pacific Symposium on Biocomputing '96, P109
  • [5] Chomsky N., 1959, Information and Control, V2, P137, DOI [10.1016/s0019-9958(59)90362-6, DOI 10.1016/S0019-9958(59)90362-6, 10.1016/S0019-9958(59)90362-6, 10.1016/S0019-9958]
  • [6] RELAXATION KINETICS OF DIMER FORMATION BY SELF COMPLEMENTARY OLIGONUCLEOTIDES
    CRAIG, ME
    CROTHERS, DM
    DOTY, P
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1971, 62 (02) : 383 - &
  • [7] Danilova Ludmlla V., 2006, Journal of Bioinformatics and Computational Biology, V4, P589, DOI 10.1142/S0219720006001904
  • [8] Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction
    Dowell, RD
    Eddy, SR
    [J]. BMC BIOINFORMATICS, 2004, 5 (1)
  • [9] Durbin R., 1998, Biological sequence analysis: probabilistic models of proteins and nucleic acids
  • [10] RNA SEQUENCE-ANALYSIS USING COVARIANCE-MODELS
    EDDY, SR
    DURBIN, R
    [J]. NUCLEIC ACIDS RESEARCH, 1994, 22 (11) : 2079 - 2088