NUMERICAL SIMULATION OF TIME VARIABLE FRACTIONAL ORDER MOBILE-IMMOBILE ADVECTION-DISPERSION MODEL

被引:0
|
作者
Abdelkawy, M. A. [1 ]
Zaky, M. A. [2 ]
Bhrawy, A. H. [3 ,4 ]
Baleanu, D. [5 ,6 ]
机构
[1] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf 62511, Egypt
[2] Natl Res Ctr, Dept Theoret Phys, Cairo, Egypt
[3] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[4] Beni Suef Univ, Fac Sci, Bani Suwayf 62511, Egypt
[5] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey
[6] Inst Space Sci, RO-077125 Magurele, Romania
关键词
mobile-immobile advection-dispersion equation; collocation method; Jacobi-Gauss-Lobatto quadrature; Jacobi-Gauss-Radau quadrature; Coimbra fractional derivative; LOBATTO COLLOCATION METHOD; DIFFUSION EQUATION; APPROXIMATION; CONVERGENCE; TRANSPORT; SYSTEM; SCHEME;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper reports a novel numerical technique for solving the time variable fractional order mobile-immobile advection-dispersion (TVFO-MIAD) model with the Coimbra variable time fractional derivative, which is preferable for modeling dynamical systems. The main advantage of the proposed method is that two different collocation schemes are investigated for both temporal and spatial discretizations of the TVFO-MIAD model. The problem with its boundary and initial conditions is then reduced to a system of algebraic equations that is far easier to be solved. Numerical results are consistent with the theoretical analysis and indicate the high accuracy and effectiveness of this algorithm.
引用
收藏
页码:773 / 791
页数:19
相关论文
共 50 条
  • [31] Space-time duality for the fractional advection-dispersion equation
    Kelly, James F.
    Meerschaert, Mark M.
    WATER RESOURCES RESEARCH, 2017, 53 (04) : 3464 - 3475
  • [32] Solving Time-Fractional Advection-Dispersion Equation by Variable Weights Particle Tracking Method
    Cao, Shaohua
    Jiang, Jianguo
    Wu, Jichun
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (06) : 1248 - 1258
  • [33] IMPLICIT DIFFERENCE APPROXIMATION FOR A TIME FRACTIONAL ADVECTION-DISPERSION EQUATION
    Chen Chunhua Lu Xuanzhu (College of Math. and computer Sciences
    Annals of Applied Mathematics, 2005, (03) : 250 - 255
  • [34] An advanced numerical modeling for Riesz space fractional advection-dispersion equations by a meshfree approach
    Yuan, Z. B.
    Nie, Y. F.
    Liu, F.
    Turner, I.
    Zhang, G. Y.
    Gu, Y. T.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (17-18) : 7816 - 7829
  • [35] A Matrix Transform Technique for Distributed-Order Time-Fractional Advection-Dispersion Problems
    Derakhshan, Mohammadhossein
    Hendy, Ahmed S.
    Lopes, Antonio M.
    Galhano, Alexandra
    Zaky, Mahmoud A.
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [36] Orthogonal spline collocation method for the two-dimensional time fractional mobile-immobile equation
    Qiao, Leijie
    Xu, Da
    Wang, Zhibo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (05) : 3199 - 3217
  • [37] Chebyshev spectral method for the variable-order fractional mobile–immobile advection–dispersion equation arising from solute transport in heterogeneous media
    Rupali Gupta
    Sushil Kumar
    Journal of Engineering Mathematics, 2023, 142
  • [38] Hybridizable discontinuous Galerkin methods for space-time fractional advection-dispersion equations
    Zhao, Jingjun
    Zhao, Wenjiao
    Xu, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [39] Spectral regularization method for the time fractional inverse advection-dispersion equation
    Zheng, G. H.
    Wei, T.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 81 (01) : 37 - 51
  • [40] A NEW REGULARIZATION METHOD FOR THE TIME FRACTIONAL INVERSE ADVECTION-DISPERSION PROBLEM
    Zheng, G. H.
    Wei, T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 1972 - 1990