Receding horizon control via Bolza-type optimization

被引:11
作者
Gyurkovics, É [1 ]
机构
[1] Budapest Univ Technol, Inst Math, H-1521 Budapest, Hungary
关键词
receding horizon control; predictive control; feedback stabilization; nonlinear control; stability;
D O I
10.1016/S0167-6911(98)00051-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the stabilization problem of nonlinear control systems. A variant of the receding horizon control method is proposed which is based on the solution of a certain Bolza problem. The stabilizing property of the method is proved in the case of Lipschitz continuous value function. This version of receding horizon scheme can be considered as a straightforward generalization of the so-called Fake Riccati Equation Technique for nonlinear constrained systems. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:195 / 200
页数:6
相关论文
共 17 条
[1]   SOME CHARACTERIZATIONS OF OPTIMAL TRAJECTORIES IN CONTROL-THEORY [J].
CANNARSA, P ;
FRANKOWSKA, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (06) :1322-1347
[2]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[3]  
Fleming W.H., 2012, Applications of Mathematics, VVolume 1
[4]  
GYURKOVICS E, 1997, P 4 EUR CONTR C 97 B
[5]  
GYURKOVICS E, 1996, J MATH SYSTEMS ESTIM, V6
[6]   NONLINEAR CONTROLLABILITY AND OBSERVABILITY [J].
HERMANN, R ;
KRENER, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (05) :728-740
[7]   EASY WAY TO STABILIZE A LINEAR CONSTANT SYSTEM [J].
KLEINMAN, DL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (06) :692-+
[8]   STABILIZING STATE-FEEDBACK DESIGN VIA THE MOVING HORIZON METHOD [J].
KWON, WH ;
BRUCKSTEIN, AM ;
KAILATH, T .
INTERNATIONAL JOURNAL OF CONTROL, 1983, 37 (03) :631-643
[9]   RECEDING HORIZON CONTROL OF NONLINEAR-SYSTEMS [J].
MAYNE, DQ ;
MICHALSKA, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (07) :814-824
[10]  
MEADOWS ES, 1993, PROCEEDINGS OF THE 1993 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P2926