Deep convolutional neural networks for breast image analysis on holographic microwave imaging

被引:0
|
作者
Wang, Lulu [1 ]
Xu, Jinzhang [2 ]
机构
[1] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Dept Biomed Engn, Hefei, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei, Anhui, Peoples R China
来源
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 3 | 2019年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents the development of a deep convolutional neural network (CNN) method namely super-solution CNN to produce a high-resolution microwave breast image from a low-resolution model, which helps to improve the accuracy and efficiency of breast lesion detection within microwave image. Various experiments are conducted to validate the proposed method. Experimental results show that the proposed approach has the potential to produce a high-resolution breast image with high-accuracy.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Paragraph Image Captioning with Deep Fully Convolutional Neural Networks
    Li R.-F.
    Liang H.-Y.
    Feng F.-X.
    Zhang G.-W.
    Wang X.-J.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (06): : 155 - 161
  • [32] Cystoscopy Image Classification Using Deep Convolutional Neural Networks
    Hashemi, Seyyed Mohammadreza
    Hassanpour, Hamid
    Kozegar, Ehsan
    Tan, Tao
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (01): : 193 - 205
  • [33] CLASSIFICATION BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS WITH HYPERSPECTRAL IMAGE
    Zheng, Zezhong
    Zhang, Yameng
    Li, Liutong
    Zhu, Mingcang
    He, Yong
    Li, Minqi
    Guo, Zhengqiang
    He, Yue
    Yu, Zhenlu
    Yang, Xiaocheng
    Liu, Xin
    Luo, Jianhua
    Yang, Taoli
    Liu, Yalan
    Li, Jiang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1828 - 1831
  • [34] Dense Image Labeling Using Deep Convolutional Neural Networks
    Islam, Md Amirul
    Bruce, Neil
    Wang, Yang
    2016 13TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV), 2016, : 16 - 23
  • [35] Iris Image Compression Using Deep Convolutional Neural Networks
    Jalilian, Ehsaneddin
    Hofbauer, Heinz
    Uhl, Andreas
    SENSORS, 2022, 22 (07)
  • [36] Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review
    Rawat, Waseem
    Wang, Zenghui
    NEURAL COMPUTATION, 2017, 29 (09) : 2352 - 2449
  • [37] Image denoising via deep residual convolutional neural networks
    Lan, Rushi
    Zou, Haizhang
    Pang, Cheng
    Zhong, Yanru
    Liu, Zhenbing
    Luo, Xiaonan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) : 1 - 8
  • [38] Image denoising via deep residual convolutional neural networks
    Rushi Lan
    Haizhang Zou
    Cheng Pang
    Yanru Zhong
    Zhenbing Liu
    Xiaonan Luo
    Signal, Image and Video Processing, 2021, 15 : 1 - 8
  • [39] Focus prediction in digital holographic microscopy using deep convolutional neural networks
    Pitkaaho, Tomi
    Manninen, Aki
    Naughton, Thomas J.
    APPLIED OPTICS, 2019, 58 (05) : A202 - A208
  • [40] IMAGE REGISTRATION OF SATELLITE IMAGERY WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Vakalopoulou, Maria
    Christodoulidis, Stergios
    Sahasrabudhe, Mihir
    Mougiakakou, Stavroula
    Paragios, Nikos
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4939 - 4942