Approximating mutual information for multi-label feature selection

被引:34
作者
Lee, J. [1 ]
Lim, H. [1 ]
Kim, D. -W. [1 ]
机构
[1] Chung Ang Univ, Sch Engn & Comp Sci, Seoul 156756, South Korea
关键词
Classification (of information);
D O I
10.1049/el.2012.1600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Proposed is a new multi-label feature selection method that captures relationships between features and labels without transforming the problem into single-label classification. Using approximated joint mutual information, the proposed incremental feature selection algorithm provides markedly better classification performance than well-known conventional methods.
引用
收藏
页码:929 / 930
页数:2
相关论文
共 8 条
[1]  
[Anonymous], 2010, P ACM SIGKDD
[2]  
[Anonymous], 2008, ISMIR
[3]   SOME INTERSECTION-THEOREMS FOR ORDERED SETS AND GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL ;
FRANKL, P ;
SHEARER, JB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (01) :23-37
[4]  
Doquire G, 2011, LECT NOTES COMPUT SC, V6691, P9, DOI 10.1007/978-3-642-21501-8_2
[5]  
Hariharan B., 2010, P 27 INT C MACH LEAR, P1757
[6]  
Tsoumakas G, 2011, J MACH LEARN RES, V12, P2411
[7]  
Wang H, 2010, LECT NOTES COMPUT SC, V6316, P126, DOI 10.1007/978-3-642-15567-3_10
[8]   Feature selection for multi-label naive Bayes classification [J].
Zhang, Min-Ling ;
Pena, Jose M. ;
Robles, Victor .
INFORMATION SCIENCES, 2009, 179 (19) :3218-3229