Efficient quantum memory for single-photon polarization qubits

被引:234
|
作者
Wang, Yunfei [1 ]
Li, Jianfeng [1 ]
Zhang, Shanchao [1 ]
Su, Keyu [1 ]
Zhou, Yiru [1 ]
Liao, Kaiyu [1 ]
Du, Shengwang [1 ,2 ,3 ]
Yan, Hui [1 ]
Zhu, Shi-Liang [1 ,4 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou, Guangdong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Kowloon, Hong Kong, Peoples R China
[4] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
ATOMIC ENSEMBLES; COHERENCE TIME; STORAGE; RETRIEVAL; LIGHT;
D O I
10.1038/s41566-019-0368-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A quantum memory, for storing and retrieving flying photonic quantum states, is a key interface for realizing long-distance quantum communication and large-scale quantum computation. While many experimental schemes demonstrating high storage and retrieval efficiency have been performed with weak coherent light pulses, all quantum memories for true single photons achieved so far have efficiencies far below 50%, a threshold value for practical applications. Here, we report the demonstration of a quantum memory for single-photon polarization qubits with an efficiency of > 85% and a fidelity of > 99%, based on balanced two-channel electromagnetically induced transparency in laser-cooled rubidium atoms. For the single-channel quantum memory, the optimized efficiency for storing and retrieving single-photon temporal waveforms can be as high as 90.6%. This result pushes the photonic quantum memory closer to practical applications in quantum information processing.
引用
收藏
页码:346 / 351
页数:6
相关论文
共 50 条
  • [41] SINGLE-PHOTON ENTANGLEMENT CONCENTRATION FOR LONG-DISTANCE QUANTUM COMMUNICATION
    Sheng, Yu-Bo
    Deng, Fu-Guo
    Zhou, Hong-Yu
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (3-4) : 272 - 281
  • [42] Heralded single-photon sources for quantum-key-distribution applications
    Schiavon, Matteo
    Vallone, Giuseppe
    Ticozzi, Francesco
    Villoresi, Paolo
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [43] Recent advances in nanowire quantum dot (NWQD) single-photon emitters
    Arab, Hossein
    MohammadNejad, Shahram
    KhodadadKashi, Anahita
    Ahadzadeh, Shabnam
    QUANTUM INFORMATION PROCESSING, 2020, 19 (02)
  • [44] Nuclear Quantum Memory and Time Sequencing of a Single γ Photon
    Zhang, Xiwen
    Liao, Wen-Te
    Kalachev, Alexey
    Shakhmuratov, Rustem
    Scully, Marlan
    Kocharovskaya, Olga
    PHYSICAL REVIEW LETTERS, 2019, 123 (25)
  • [45] Single-photon emitters in GaSe
    Tonndorf, Philipp
    Schwarz, Stefan
    Kern, Johannes
    Niehues, Iris
    Del Pozo-Zamudio, Osvaldo
    Dmitriev, Alexander I.
    Bakhtinov, Anatoly P.
    Borisenko, Dmitry N.
    Kolesnikov, Nikolai N.
    Tartakovskii, Alexander I.
    de Vasconcellos, Steffen Michaelis
    Bratschitsch, Rudolf
    2D MATERIALS, 2017, 4 (02):
  • [46] On single-photon and classical interference
    Barnett, Stephen M.
    PHYSICA SCRIPTA, 2022, 97 (11)
  • [47] Purification of Single-Photon Entanglement
    Salart, D.
    Landry, O.
    Sangouard, N.
    Gisin, N.
    Herrmann, H.
    Sanguinetti, B.
    Simon, C.
    Sohler, W.
    Thew, R. T.
    Thomas, A.
    Zbinden, H.
    PHYSICAL REVIEW LETTERS, 2010, 104 (18)
  • [48] Heralded atomic-ensemble quantum memory for photon polarization states
    Tanji, Haruka
    Simon, Jonathan
    Ghosh, Saikat
    Bloom, Benjamin
    Vuletic, Vladan
    PHYSICA SCRIPTA, 2009, T135
  • [49] Optical field-strength polarization of two-mode single-photon states
    Linares, J.
    Nistal, M. C.
    Barral, D.
    Moreno, V.
    EUROPEAN JOURNAL OF PHYSICS, 2010, 31 (05) : 991 - 1005
  • [50] Optical quantum memory for polarization qubits with V-type three-level atoms
    Viscor, D.
    Ferraro, A.
    Loiko, Yu
    Corbalan, R.
    Mompart, J.
    Ahufinger, V.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (19)