Global Well-Posedness of the Incompressible Magnetohydrodynamics
被引:99
作者:
Cai, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Cai, Yuan
[1
]
Lei, Zhen
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Fudan Univ, LMNS, Shanghai 200433, Peoples R China
Fudan Univ, Key Lab CAM, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Lei, Zhen
[1
,2
,3
]
机构:
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, LMNS, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab CAM, Shanghai 200433, Peoples R China
MHD EQUATIONS;
MAGNETIC DIFFUSION;
SYSTEM;
EXISTENCE;
DIMENSIONS;
WAVES;
D O I:
10.1007/s00205-017-1210-4
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper studies the Cauchy problem of the incompressible magnetohydro dynamic systems with or without viscosity nu. Under the assumption that the initial velocity field and the displacement of the initialmagnetic field froma non-zero constant are sufficiently small in certain weighted Sobolev spaces, the Cauchy problem is shown to be globally well-posed for all nu ae 0 and all spaces with dimension n ae 2. Such a result holds true uniformly in nonnegative viscosity parameters. The proof is based on the inherent strong null structure of the systems introduced by Lei (Commun Pure Appl Math 69(11):2072-2106, 2016) and the ghost weight technique introduced by Alinhac (Invent Math 145(3):597-618, 2001).
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Chinese Acad Sci, HUA Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaFac Sci Tunis, Dept Math, Campus Univ, Tunis 2092, Tunisia
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Chinese Acad Sci, HUA Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaFac Sci Tunis, Dept Math, Campus Univ, Tunis 2092, Tunisia