Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo method

被引:958
|
作者
Yang, ZH [1 ]
Rannala, B [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT INTEGRAT BIOL,BERKELEY,CA 94720
关键词
molecular phylogeny; Bayesian estimation; Markov Chain Monte Carlo; nucleotide substitution; birth-death process;
D O I
10.1093/oxfordjournals.molbev.a025811
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An improved Bayesian method is presented for estimating phylogenetic trees using DNA sequence data. The birth-death process with species sampling is used to specify the prior distribution of phylogenies and ancestral speciation times, and the posterior probabilities of phylogenies are used to estimate the maximum posterior probability (MAP) tree. Monte Carlo integration is used to integrate over the ancestral speciation times for particular trees. A Markov Chain Monte Carlo method is used to generate the set of trees with the highest posterior probabilities. Methods are described for an empirical Bayesian analysis, in which estimates of the speciation and extinction rates are used in calculating the posterior probabilities, and a hierarchical Bayesian analysis, in which these parameters are removed from the model by an additional integration. The Markov Chain Monte Carlo method avoids the requirement of our earlier method for calculating MAP trees to sum over all possible topologies (which limited the number of taxa in an analysis to about five). The methods are applied to analyze DNA sequences for nine species of primates, and the MAP tree, which is identical to a maximum-likelihood estimate of topology, has a probability of approximately 95%.
引用
收藏
页码:717 / 724
页数:8
相关论文
共 50 条
  • [41] Computational toxicology of chloroform: Reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data
    Lyons, Michael A.
    Yang, Raymond S. H.
    Mayeno, Arthur N.
    Reisfeld, Brad
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2008, 116 (08) : 1040 - 1046
  • [42] Approximate Bayesian Computation using Markov Chain Monte Carlo simulation: DREAM(ABC)
    Sadegh, Mojtaba
    Vrugt, Jasper A.
    WATER RESOURCES RESEARCH, 2014, 50 (08) : 6767 - 6787
  • [43] Bayesian history matching using artificial neural network and Markov Chain Monte Carlo
    Maschio, Celio
    Schiozer, Denis Jose
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 123 : 62 - 71
  • [44] Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods
    Moussaoui, S
    Carteret, C
    Brie, D
    Mohammad-Djafari, A
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 81 (02) : 137 - 148
  • [45] Effective Bayesian inference by Data-Driven Markov Chain Monte Carlo for object recognition and image segmentation
    Zhu, SC
    Tu, ZW
    Zhang, R
    AUTOMATIC TARGET RECOGNITION X, 2000, 4050 : 320 - 332
  • [46] Using Markov-switching models with Markov chain Monte Carlo inference methods in agricultural commodities trading
    Oscar V. De la Torre-Torres
    Dora Aguilasocho-Montoya
    José Álvarez-García
    Biagio Simonetti
    Soft Computing, 2020, 24 : 13823 - 13836
  • [47] Using Markov-switching models with Markov chain Monte Carlo inference methods in agricultural commodities trading
    De la Torre-Torres, Oscar, V
    Aguilasocho-Montoya, Dora
    Alvarez-Garcia, Jose
    Simonetti, Biagio
    SOFT COMPUTING, 2020, 24 (18) : 13823 - 13836
  • [48] Markov Chain Monte Carlo-based Bayesian method for nonlinear stochastic model updating
    Ding, Ya-Jie
    Wang, Zuo-Cai
    Chen, Genda
    Ren, Wei-Xin
    Xin, Yu
    JOURNAL OF SOUND AND VIBRATION, 2022, 520
  • [49] Railway ballast damage detection by Markov chain Monte Carlo-based Bayesian method
    Lam, Heung F.
    Yang, Jia H.
    Hu, Qin
    Ng, Ching T.
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2018, 17 (03): : 706 - 724
  • [50] Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics
    Lakner, Clemens
    Van Der Mark, Paul
    Huelsenbeck, John P.
    Larget, Bret
    Ronquist, Fredrik
    SYSTEMATIC BIOLOGY, 2008, 57 (01) : 86 - 103