Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo method

被引:958
|
作者
Yang, ZH [1 ]
Rannala, B [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT INTEGRAT BIOL,BERKELEY,CA 94720
关键词
molecular phylogeny; Bayesian estimation; Markov Chain Monte Carlo; nucleotide substitution; birth-death process;
D O I
10.1093/oxfordjournals.molbev.a025811
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An improved Bayesian method is presented for estimating phylogenetic trees using DNA sequence data. The birth-death process with species sampling is used to specify the prior distribution of phylogenies and ancestral speciation times, and the posterior probabilities of phylogenies are used to estimate the maximum posterior probability (MAP) tree. Monte Carlo integration is used to integrate over the ancestral speciation times for particular trees. A Markov Chain Monte Carlo method is used to generate the set of trees with the highest posterior probabilities. Methods are described for an empirical Bayesian analysis, in which estimates of the speciation and extinction rates are used in calculating the posterior probabilities, and a hierarchical Bayesian analysis, in which these parameters are removed from the model by an additional integration. The Markov Chain Monte Carlo method avoids the requirement of our earlier method for calculating MAP trees to sum over all possible topologies (which limited the number of taxa in an analysis to about five). The methods are applied to analyze DNA sequences for nine species of primates, and the MAP tree, which is identical to a maximum-likelihood estimate of topology, has a probability of approximately 95%.
引用
收藏
页码:717 / 724
页数:8
相关论文
共 50 条
  • [21] Improving Bayesian analysis for LISA Pathfinder using an efficient Markov Chain Monte Carlo method
    Luigi Ferraioli
    Edward K. Porter
    Michele Armano
    Heather Audley
    Giuseppe Congedo
    Ingo Diepholz
    Ferran Gibert
    Martin Hewitson
    Mauro Hueller
    Nikolaos Karnesis
    Natalia Korsakova
    Miquel Nofrarias
    Eric Plagnol
    Stefano Vitale
    Experimental Astronomy, 2014, 37 : 109 - 125
  • [22] Improving Bayesian analysis for LISA Pathfinder using an efficient Markov Chain Monte Carlo method
    Ferraioli, Luigi
    Porter, Edward K.
    Armano, Michele
    Audley, Heather
    Congedo, Giuseppe
    Diepholz, Ingo
    Gibert, Ferran
    Hewitson, Martin
    Hueller, Mauro
    Karnesis, Nikolaos
    Korsakova, Natalia
    Nofrarias, Miquel
    Plagnol, Eric
    Vitale, Stefano
    EXPERIMENTAL ASTRONOMY, 2014, 37 (01) : 109 - 125
  • [23] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Jasper A. Vrugt
    Cees G. H. Diks
    Martyn P. Clark
    Environmental Fluid Mechanics, 2008, 8 : 579 - 595
  • [24] Bayesian connective field modeling using a Markov Chain Monte Carlo approach
    Invernizzi, Azzurra
    Haak, Koen V.
    Carvalho, Joana C.
    Renken, Remco J.
    Cornelissen, Frans W.
    NEUROIMAGE, 2022, 264
  • [25] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Vrugt, Jasper A.
    Diks, Cees G. H.
    Clark, Martyn P.
    ENVIRONMENTAL FLUID MECHANICS, 2008, 8 (5-6) : 579 - 595
  • [26] Bayesian analysis of the discovery process model using Markov chain Monte Carlo
    Sinding-Larsen R.
    Xu J.
    Natural Resources Research, 2005, 14 (4) : 333 - 344
  • [27] Inference of past climate from borehole temperature data using bayesian reversible jump markov chain monte carlo
    Hopcroft, Peter O.
    Gallagher, Kerry
    Pain, Chris C.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 171 (03) : 1430 - 1439
  • [28] Identifying influential observations in Bayesian models by using Markov chain Monte Carlo
    Jackson, Dan
    White, Ian R.
    Carpenter, James
    STATISTICS IN MEDICINE, 2012, 31 (11-12) : 1238 - 1248
  • [29] Solar Bayesian Analysis Toolkit-A New Markov Chain Monte Carlo IDL Code for Bayesian Parameter Inference
    Anfinogentov, Sergey A.
    Nakariakov, Valery M.
    Pascoe, David J.
    Goddard, Christopher R.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 252 (01)
  • [30] Markov chain Monte Carlo exact inference for social networks
    McDonald, John W.
    Smith, Peter W. F.
    Forster, Jonathan J.
    SOCIAL NETWORKS, 2007, 29 (01) : 127 - 136