Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China

被引:71
|
作者
Yang, Wen [1 ,2 ]
Yan, Yaner [1 ,2 ]
Jiang, Fan [1 ,2 ]
Leng, Xin [1 ,2 ]
Cheng, Xiaoli [4 ]
An, Shuqing [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Sch Life Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Inst Wetland Ecol, Nanjing 210023, Jiangsu, Peoples R China
[3] Jiangsu Engn Lab Wetland Restorat, Changshu 215500, Peoples R China
[4] Chinese Acad Sci, Wuhan Bot Garden, Key Lab Aquat Bot & Watershed Ecol, Wuhan 430074, Peoples R China
基金
中国博士后科学基金;
关键词
Phospholipid fatty acids; Plant invasion; Soil microbial community; Soil carbon and nitrogen; Soil microbial biomass carbon; Coastal wetland; ORGANIC-MATTER; PLANT INVASION; SALT-MARSH; ECOSYSTEM CARBON; FATTY-ACIDS; NITROGEN; BACTERIAL; DECOMPOSITION; IMPACTS; AVAILABILITY;
D O I
10.1007/s11104-016-2941-y
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Plant invasion has been reported to alter ecosystem carbon (C) and nitrogen (N) cycling processes and pools. The mechanisms involved in how plant invasion affects the soil microbial community-the primary mediator of soil C and N cycling-remain poorly understood. The objective of this study was therefore to evaluate the effect of plant invasion on the soil microbial community in a coastal wetland of eastern China. We investigated the impact of an exotic C-4 perennial grass, Spartina alterniflora, on the soil microbial community structure based on phospholipid fatty acids (PLFAs) analysis and chloroform fumigation-extraction by comparing it to that of bare flat and native C-3 plants Suaeda salsa and Phragmites australis communities. Spartina alterniflora invasion significantly increased soil microbial biomass C and the total and various types of PLFAs compared with bare flat, Suaeda salsa and Phragmites australis communities. Increased concentrations of soil moisture, electrical conductivity, water-soluble organic carbon (WSOC), and total, labile and recalcitrant soil organic C and N, and decreased soil pH in Spartina alterniflora community explained 65.9 % of the total variability in the PLFAs. WSOC and soil labile organic N were strongly correlated with PLFAs, whereas soil pH was negatively related to PLFAs. A 10-year Spartina alterniflora invasion significantly altered soil microbial biomass and community structure by increasing available substrate. The changes in soil microbial biomass and community structure may in turn enhance soil C and N sequestration in a coastal wetland of eastern China.
引用
收藏
页码:443 / 456
页数:14
相关论文
共 50 条
  • [1] Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China
    Wen Yang
    Yaner Yan
    Fan Jiang
    Xin Leng
    Xiaoli Cheng
    Shuqing An
    Plant and Soil, 2016, 408 : 443 - 456
  • [2] Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China
    Yang, Wen
    Jeelani, Nasreen
    Leng, Xin
    Cheng, Xiaoli
    An, Shuqing
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Shifts of soil microbial community composition along a short-term invasion chronosequence of Spartina alterniflora in a Chinese estuary
    Zhang, Guangliang
    Bai, Junhong
    Jia, Jia
    Wang, Wei
    Wang, Xin
    Zhao, Qingqing
    Lu, Qiongqiong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 657 : 222 - 233
  • [4] Spartina alterniflora invasion alters soil microbial metabolism in coastal wetland of China
    Li, Yong-Xue
    Laborda, Pedro
    Xie, Xiao-Ling
    Zhou, Rong
    Chen, Yao
    Li, Teng
    Pu, Zheng-Hui
    Wang, Yu-Lu
    Deng, Zi-Fa
    ESTUARINE COASTAL AND SHELF SCIENCE, 2020, 245
  • [5] Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China
    Yang, Wen
    Zhao, Hui
    Leng, Xin
    Cheng, Xiaoli
    An, Shuqing
    CATENA, 2017, 156 : 281 - 289
  • [6] Invasion of exotic Spartina alterniflora alters the size, availability, and stability of the soil phosphorus pool in the coastal wetlands of Eastern China
    Zhang, Huan
    Yang, Xitong
    Yin, Zheng
    Wang, Jiahui
    Wang, Jinsong
    An, Shuqing
    Cheng, Xiaoli
    Yang, Wen
    CATENA, 2024, 239
  • [7] Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora
    Zhang, Yaohong
    Ding, Weixin
    Luo, Jiafa
    Donnison, Andrea
    SOIL BIOLOGY & BIOCHEMISTRY, 2010, 42 (10) : 1712 - 1720
  • [8] Seawall construction alters soil carbon and nitrogen dynamics and soil microbial biomass in an invasive Spartina alterniflora salt marsh in eastern China
    Yang, Wen
    Qiao, Yajun
    Li, Ning
    Zhao, Hui
    Yang, Rong
    Leng, Xin
    Cheng, Xiaoli
    An, Shuqing
    APPLIED SOIL ECOLOGY, 2017, 110 : 1 - 11
  • [9] Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China
    Yang, Wen
    Zhao, Hui
    Chen, Xinglong
    Yin, Shenglai
    Cheng, Xiaoli
    An, Shuqing
    ECOLOGICAL ENGINEERING, 2013, 61 : 50 - 57
  • [10] Seasonal variations in soil physicochemical properties and microbial community structure influenced by Spartina alterniflora invasion and Kandelia obovata restoration
    Lin, Genmei
    He, Yongni
    Lu, Jianguo
    Chen, Hui
    Feng, Jianxiang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 797